Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T20:38:06.926Z Has data issue: false hasContentIssue false

Five-Coordinate Aluminum in Allophane

Published online by Cambridge University Press:  28 February 2024

Cyril W. Childs
Affiliation:
School of Chemical and Physical Sciences, Victoria University, PO Box 600, Wellington, New Zealand
Shigenobu Hayashi
Affiliation:
National Institute of Materials and Chemical Research, Tsukuba 305, Japan
Roger H. Newman
Affiliation:
Industrial Research Ltd, PO Box 31-310, Lower Hutt, New Zealand

Abstract

Samples of Silica Springs allophane from Tongariro National Park, New Zealand, having Al/Si atomic ratios in the range 1.1-1.9, were studied by 27Al nuclear magnetic resonance (NMR) spectroscopy with high field strength (9.4 and 11.7 T) and fast magic-angle spinning (MAS) (9-13 kHz). Spectra for all samples show peaks for 6- and 4-coordinate Al and also for 5-coordinate Al. For 1 sample, the peak for 5-coordinate Al is dominant. Use of 2 instruments and 2 field strengths allowed the integrity of the spectra and the assignment of 5-coordinate Al to be verified. The “true” chemical shift (after a small correction for quadrupolar shift) observed for 5-coordinate Al in Silica Springs allophane is 36 ± 1 ppm, which is consistent with shifts reported for 5-coordination in well-characterized crystalline structures. We suggest that 5-coordination in Silica Springs allophane is associated with the edges of fragments of incomplete octahedral sheets that are bonded to disordered, though more complete, curved tetrahedral sheets in the primary particles of this allophane. Other allophanes with Al/Si < 2, and which are poor in octahedra relative to tetrahedra, may also have significant Al in 5-coordinate sites.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agafonov, V. Kahn, A. Michel, D. and Perez y Jorba, M., 1986 Crystal structure of a new digermanate: Al2Ge2O7 J Solid State Chem 62 3 402404 10.1016/0022-4596(86)90256-2.CrossRefGoogle Scholar
Alemany, L.B. Massiot, D. Sherriff, B.L. Smith, M.E. and Taulelle, F., 1991 Observation and accurate quantification of 27A1 MAS NMR spectra of some Al2SiO5 polymorphs containing sites with large quadrupole interactions Chem Phys Lett 177 301306 10.1016/0009-2614(91)85035-U.CrossRefGoogle Scholar
Álvarez, L.J. Leon, L.E. Sanz, J.F. Capitáno, M.J. and Odriozola, J.A., 1995 Computer simulation of γ-Al2O3 microscrystal J Phys Chem 99 1787217876 10.1021/j100051a011.CrossRefGoogle Scholar
Araki, T. Finney, J.J. and Zoltait, T., 1968 The crystal structure of augelite Am Mineral 53 10961103.Google Scholar
Bleam, W.F. Dec, S.F. and Frye, J.S., 1989 27Al solid-state nuclear magnetic resonance study of five-coordinated aluminium in augelite and senegalite Phys Chem Miner 16 817820 10.1007/BF00209706.CrossRefGoogle Scholar
Burnham, C.W. and Buerger, M.J., 1961 Refinement of the crystal structure of andalusite Z Krist 115 269290 10.1524/zkri.1961.115.3-4.269.CrossRefGoogle Scholar
Childs, C.W. Inoue, K. Seyama, H. Soma, M. Theng, B.K.G. and Yuan, G., 1997 X-ray photoelectron spectroscopic characterization of Silica Springs allophane Clay Miner 32 565572 10.1180/claymin.1997.032.4.07.CrossRefGoogle Scholar
Childs, C.W. Parfitt, R.L. and Newman, R.H., 1990 Structural studies of Silica Springs allophane Clay Miner 25 329341 10.1180/claymin.1990.025.3.08.CrossRefGoogle Scholar
Coster, D. Blumenfeld, A.L. and Fripiat, J.J., 1994 Lewis acid sites and surface aluminium in aluminas and zeolites: A high-resolution NMR study J Phys Chem 98 62016211 10.1021/j100075a024.CrossRefGoogle Scholar
Cruikshank, M.C. and Dent Glasser, L.S., 1985 A penta-co-ordinat-ed aluminate dimer; X-ray crystal structure J Chem Soc, Chem Commun 8485.CrossRefGoogle Scholar
Cruikshank, M.C. Dent Glasser, L.S. Barri, S.A.I. and Popletti, I.J.E., 1986 Penta-co-ordinated aluminium: A solid-state N.M.R. Study J Chem Soc, Chem Commun 2324.CrossRefGoogle Scholar
De Witte, B.M. Grobet, P.J. and Uytterhoeven, J.B., 1995 Pentacoor-dinated aluminium in noncalcined amorphous aluminosili-cates, prepared in alkaline and acid mediums J Am Chem Soc 99 69616965.Google Scholar
Duffy, S.J. and vanLoon, G.W., 1995 Investigations of aluminium hydroxyphosphates and activated sludge by 27A1 and 31P MAS NMR Can J Chem 73 16451659 10.1139/v95-204.CrossRefGoogle Scholar
Farmer, V.C. Fraser, A.R. and Tait, J.M., 1979 Characterization of the chemical structures of natural and synthetic alumino-silicate gels and sols by infrared spectroscopy Geochim Cosmochim Acta 43 14171420 10.1016/0016-7037(79)90135-2.CrossRefGoogle Scholar
Fitzgerald, J.J. Dec, S.F. and Hamza, A.I., 1989 Observation of five-coordinated Al in pyrophyllite dehydroxylate by solid-state 27Al NMR spectroscopy at 14 T Am Mineral 74 14051408.Google Scholar
Gilson, I.-P. Edwards, G.C. Peters, A.W. Rajagopalan, K. Worms-becher, R.F. Roberie, T.G. and Shatlock, M.P., 1987 Penta-co-ordinated aluminium in zeolites and aluminosilicates J Chem Soc, Chem Commun 9192.CrossRefGoogle Scholar
Goodman, B.A. Russell, J.D. Motez, B. Oldfield, E. and Kirkpatrick, R.J., 1985 Structural studies of imogolite and allophanes by aluminium-27 and silicon-29 nuclear magnetic resonance spectroscopy Phys Chem Miner 12 342346 10.1007/BF00654344.CrossRefGoogle Scholar
He, H. Barr, T.L. and Klinowski, J., 1995 ESCA and solid-state NMR studies of allophane Clay Miner 30 201209 10.1180/claymin.1995.030.3.04.CrossRefGoogle Scholar
Jarchow, O. Klaska, K.-H. and Schenk-Strauss, H., 1985 Die Kristallstrukturen von NdAlGe2O7 und NdGaGe2O7 Z Kristallogr 172 159166 10.1524/zkri.1985.172.3-4.159.CrossRefGoogle Scholar
Keegan, T.D. Araki, T. and Moore, P.B., 1979 Senegalite, Al2(OH)3(H2O)(PO4), a novel structure type Am Mineral 64 12431247.Google Scholar
Kellberg, L. Linsten, M. and Jakobsen, H.J., 1991 27Al1H cross-polarization and ultrahigh-speed 27AL MAS NMR spectroscopy in the characterization of USY zeolites Chem Phys Lett 182 120126 10.1016/0009-2614(91)80114-D.CrossRefGoogle Scholar
Kohn, S.C. Dupree, R. Mortuza, M.G. and Henderson, C.M.B., 1991 NMR evidence for five- and six-coordinated aluminium fluoride complexes in F-bearing aluminosilicate glasses Am Mineral 76 309312.Google Scholar
Kunath-Fandrei, G. Bastow, T.J. Hall, J.S. Jager, C. and Smith, M.E., 1995 Quantification of aluminium coordinations in amorphous aluminas by combined central and satellite transition magic angle spinning NMR spectroscopy J Phys Chem 99 1513815141 10.1021/j100041a033.CrossRefGoogle Scholar
MacKenzie, K.J.D. Bowden, M.E. and Meinhold, R.H., 1991 The structure and thermal transformations of allophanes studied by 29Si and 27Al high-resolution solid-state NMR Clays Clay Miner 39 337346 10.1346/CCMN.1991.0390401.CrossRefGoogle Scholar
Massiot, D. Kahn-Harari, A. Michel, D. Muller, D. and Taulelle, F., 1990 Aluminium-27 MAS NMR of Al2Ge2O7 and La-AlGe2O7: Two pentacoordinated aluminium environments Magn Reson Chem 28 S82 S88 10.1002/mrc.1260281314.CrossRefGoogle Scholar
Müller, D. Gessner, W. Samoson, A. Lippmaa, E. and Scheler, G., 1986 Solid-state 27Al NMR chemical shift and quadrupole coupling data for condensed AlO4 tetrahedra J Chem Soc, Dalton Trans 12771281.CrossRefGoogle Scholar
Parfitt, R., 1990 Allophane in New Zealand—A review Aust J Soil Res 28 343360 10.1071/SR9900343.CrossRefGoogle Scholar
Risbud, S.H. Kirkpatrick, R.J. Taglialavore, A.P. and Montez, B., 1987 Solid-state NMR evidence of 4-, 5-, and 6-fold aluminium sites in roller-quenched SiO2-Al2O3 glasses J Am Ceram Soc 70 0002 10.1111/j.1151-2916.1987.tb04859.x.CrossRefGoogle Scholar
Rocha, J. and Klinowski, J., 1991 27Al solid-state NMR spectra of ultrastable zeolite Y with fast magic-angle spinning and 1H-27Al cross-polarization J Chem Soc, Chem Commun 11211122.CrossRefGoogle Scholar
Samoson, A., 1985 Satellite transition high-resolution NMR of quadrupolar nuclei in powders Chem Phys Lett 119 2932 10.1016/0009-2614(85)85414-2.CrossRefGoogle Scholar
Sato, R.K. McMillan, P.F. Dennison, P. and Dupree, R., 1991 High-resolution 27Al and 29Si MAS NMR investigation of SiO2-A12O3 glasses J Phys Chem 95 44834489 10.1021/j100164a057.CrossRefGoogle Scholar
Schmücker, M. and Schneider, H., 1996 A new approach on the coordination of Al in non-crystalline gels and glasses of the system Al2O3-SiO2 Ber Bunsenges Phys Chem 100 15501553 10.1002/bbpc.19961000940.CrossRefGoogle Scholar
Van Simon, S. Moorsei, G.J.M.P. De Kentgens, A.P.M. and Boer, E., 1995 High fraction of penta-coordinated aluminium in amorphous and crystalline aluminium borates Solid State NMR 5 163173 10.1016/0926-2040(95)00019-M.CrossRefGoogle Scholar
Smith, M.E. and Steuernagel, S., 1992 A multinuclear magnetic resonance examination of the mineral grandidierite Solid State Nuclear Magn Reson 1 175183 10.1016/S0926-2040(10)80002-5.CrossRefGoogle ScholarPubMed
Stephenson, D.A. and Moore, P.B., 1968 The crystal structure of grandidierite, (Mg,Fe)Al,SiBO9 Acta Cryst B24 15181522 10.1107/S0567740868004577.CrossRefGoogle Scholar
Theng, B.K.G. Russell, M. Churchman, G.J. and Parfitt, R.L., 1982 Surface properties of allophane, imogolite and halloysite Clays Clay Miner 30 143149 10.1346/CCMN.1982.0300209.CrossRefGoogle Scholar
Wada, K. and Theng, B.K.G., 1980 Mineralogical characteristics of Andisols Soils with variable charge Lower Hutt NZ Soc Soil Sci 87107.Google Scholar
Wada, K., Dixon, J.B. and Weed, S.B., 1989 Allophane and imogolite Minerals in soil environments Madison Soil Sci Soc Am 10511087.Google Scholar
Wada, K., Churchman, G.J. Fitzpatrick, R.W. and Eggleton, R.A., 1995 Structure and formation of non- and para-crystalline aluminosilicate clay minerals: A review Clays controlling the environment. Proc Int Clay Conf. 443448.CrossRefGoogle Scholar
Wells, N. Childs, C.W. and Downes, C.J., 1977 Silica Springs, Ton-gariro National Park, New Zealand—Analyses of the spring water and characterisation of the alumino-silicate deposit Geochim Cosmochim Acta 41 14971506 10.1016/0016-7037(77)90254-X.CrossRefGoogle Scholar