Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-17T16:03:25.972Z Has data issue: false hasContentIssue false

High-Resolution Transmission Electron Microscopy Study of Mn-Oxyhydroxide Transformations and Accompanying Phases in a Lateritic Profile of Moanda, Gabon

Published online by Cambridge University Press:  02 April 2024

M. Amouric
Affiliation:
Centre de Recherche sur les Mécanismes de la Croissance Cristalline, C.N.R.S.-Campus Luminy, case 913, 13288 Marseille Cedex 9, France
S. Parc
Affiliation:
Laboratoire de Géosciences de l'Environnement, URA C.N.R.S. 132, Faculté des Sciences de St. Jérôme case 431, 13397 Marseille Cedex 13, France
D. Nahon
Affiliation:
Laboratoire de Géosciences de l'Environnement, URA C.N.R.S. 132, Faculté des Sciences de St. Jérôme case 431, 13397 Marseille Cedex 13, France

Abstract

Unheated natural mixtures of manganite and secondary pyrolusite, from the same lateritic manganiferous sequence, were studied in different orientations by high-resolution transmission electron microscopy (HRTEM), electron diffraction, and energy-dispersive X-ray analysis (EDX) to determine the fine structure of these phases, their possible crystallographic relations, and the genetic processes that led to the formation of the pyrolusite. Typical palisadic texture was observed for both minerals. Characteristic cracks parallel t. (010) of the pyrolusite structure and in particular <210> microfissures in manganite were noted as signs of structural accommodation accompanying the transformation phenomenon between these two minerals. A previously unreported manganese oxide of the spinel-type (γ-Mn2O3 or Mn3O4) was also identified in the original mixture. This oxide gave pure microdomains as intergrowths with pyrolusite adjacent to manganite. This is the first report of a natural occurrence of γ-Mn2O3. The manganite-pyrolusite transformation process and an unsuspected γ-Mn2O3 (Mn3O4)-pyrolusite transition were directly illustrated in detail for the first time. Interfaces between the concerned phases were not sharp or smooth, but exhibited strong strain contrasts and interferential periodicities. Lattice images and microdiffraction patterns proved that both transformations were oriented, suggestive of topotactic relations. In addition, the principal minerals in the matrix (illite, kaolinite, and goethite) were examined for a better understanding of their role in Mn-oxyhydroxides transformations.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amouric, M. and Baronnet, A., 1983 Effect of early nucleation conditions on synthetic muscovite polytypism as seen by HRTEM Phys. Chem. Miner 9 146159.CrossRefGoogle Scholar
Amouric, M. and Parron, C., 1985 Structure and growth mechanism of glauconite as seen by HRTEM Clays & Clay Minerals 33 473482.CrossRefGoogle Scholar
Amouric, M., Baronnet, A., Nahon, D. and Didier, P., 1986 Electron microscopic investigations of iron oxyhydroxides and accompanying phases in lateritic iron-crust pisolites Clays & Clay Minerals 34 4552.CrossRefGoogle Scholar
Beauvais, A., 1984 Concentrations manganesifères latéritiques; étude pétrologique de deux gites sur roches sédimentaires précambriennes: Gisement de Moanda (Gabon) et d’Azul (Brésil) .Google Scholar
Boeglin, J. L., 1981 Minéralogie et Géochimie des gisements de manganèse de Conseilheiro Lafaiete au Brésil et de Moanda au Gabon .Google Scholar
Bonev, I., 1972 On the terminology of the phenomena of mutual crystal orientation Acta Crystallogr A28 508512.CrossRefGoogle Scholar
Champness, P. E., 1971 The transformation manganite → pyrolusite Mineral. Mag 38 245248.CrossRefGoogle Scholar
Dent-Glasser, L. S. and Smith, I. B., 1968 Oriented transformations in the system MnO-O-H2O Mineral. Mag 36 976987.Google Scholar
Dixon, J. B., Golden, D. C., Calhoun, F. G., Buseck, P. R. and Bailey, J. W., 1983 Synthetic aluminous goethite investigated by HRTEM Proc. 41st Annual Meeting Electron Micros-copy Soc. Amer., Phoenix, Arizona, 1982 San Francisco San Francisco Press 192193.Google Scholar
Giovanoli, R., 1985 Layer structures and tunnel structures in manganates Chem. Erde 44 227244.Google Scholar
Hartman, P. and Perdok, W. G., 1955 Relations between structure and morphology of crystals Acta Crystallogr 8 4952.CrossRefGoogle Scholar
Hernan, L., Morales, J. and Tirado, J. L., 1986 Relationships between composition and surface properties of the dehydration products of synthetic manganite Surface and Coatings Technology 27 343350.CrossRefGoogle Scholar
Lacroix, A. and Blanchard, A., 1962 Minéralogie de la France et de ses Anciens Territoires d’Outre-Mer Tome 3, Librairie Scientifique et Technique 653670.Google Scholar
Maiti, S., Malessa, O. and Baerns, J. P., 1983 Iron/manganese oxide catalyst for Fischer-Tropsch synthesis. Part I: Structural and textural changes by calcination, reduction and synthesis Applied Catalysis 5 151170.CrossRefGoogle Scholar
Nahon, D., Beauvais, A., Boeglin, J. L., Ducloux, J. and Nziengui-Mapangou, P., 1983 Manganite formation in the first stage of the lateritic manganese ores in Africa Chem. Geol 40 2542.CrossRefGoogle Scholar
Parc, S., 1989 Contribution à l’étude cristallochimique et thermodynamique des oxy-hydroxydes de manganèse dans l’altération latéritique .Google Scholar
Parc, S., Nahon, D., Tardy, Y. and Vieillard, P., 1989 Estimated solubility products and fields of stability for cryp-tomelane, nsutite, birnessite and lithiophorite based on natural lateritic weathering sequences Amer. Mineral 74 466475.Google Scholar
Perseil, E. A. and Bouladon, J., 1971 Microstructures des oxydes de manganèse à la base du gisement de Moanda et leur signification génétique C.R. Acad. Sci., Paris 273 278279.Google Scholar
Perseil, E. A. and Giovanoli, R., 1982 Etude comparative de la Todorokite d’Ambollas des manganates à 10 Å des nodules polymétalliques des océans et des produits de synthèse C.R. Acad. Sci., Paris 294 199202.Google Scholar
Rask, J. H. and Buseck, P. R., 1986 Topotactic relations among pyrolusite, manganite and Mn5O8: A HRTEM investigation Amer. Mineral 71 805814.Google Scholar
Rask, J. H., Miner, B. A. and Buseck, P. R., 1987 Determination of manganese oxidation states in solids by EELS Ultramicroscopy 21 321326.CrossRefGoogle Scholar
Sinha, K. P. and Sinha, A. P. B., 1957 Vacancy distribution and bonding in some oxides of spinel structure J. Phys. Chem 61 758761.CrossRefGoogle Scholar
Strunz, H., 1943 Beitrag zum Pyrolusitproblem Naturwissenschaften 31 8991.CrossRefGoogle Scholar
Turner, S. and Buseck, P. R., 1979 Manganese oxide tunnel structures and their intergrowths Science 203 456458.CrossRefGoogle ScholarPubMed
Turner, S. and Buseck, P. R., 1981 Todorokites: A new family of naturally occurring manganese oxides Science 212 10241027.CrossRefGoogle ScholarPubMed
Turner, S. and Buseck, P. R., 1983 Defects in nsutite (γ-MnO2) and dry-cell battery efficiency Nature 304 143146.CrossRefGoogle Scholar
Valarelli, J. V., Hypolito, R., Simon, B., Pierrot, M. and Kern, R., 1969 Relaçao entre a estrutura e a morfologia de manganita, à luz da theoria de P.B.C. Ciencia Cultura 21 209.Google Scholar
Velde, B., 1985 Clays Minerals Amsterdam, Netherlands Elsevier.Google Scholar
Villacieros, R. G., Hernan, L., Morales, J. and Tirado, J. L., 1984 Comments on the paper “Iron/manganese oxide catalyst for Fischer-Tropsch synthesis Appl. Catalysis 5 151170.Google Scholar
Weber, F., Leclerc, J. and Millot, G., 1979 Epigénies manganésifères successives dans le gisement de Moanda Sci. Geol. Bull 32 147164.CrossRefGoogle Scholar
Yamada, N., Ohmasa, M. and Horiuchi, S., 1986 Textures in natural pyrolusites, β-MnO2, examined by 1 MV HRTEM Acta Crystallogr 42 5861.CrossRefGoogle Scholar