Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-03T18:59:30.741Z Has data issue: false hasContentIssue false

Hypothetical Structures of Magadiite and Sodium Octosilicate and Structural Relationships Between the Layered Alkali Metal Silicates and the Mordenite- and Pentasil-Group Zeolites

Published online by Cambridge University Press:  02 April 2024

Juan M. Garcés
Affiliation:
Central Research IMCL, Dow Chemical Company, Midland, Michigan 48674
Stephen C. Rocke
Affiliation:
Central Research IMCL, Dow Chemical Company, Midland, Michigan 48674
Cyrus E. Crowder
Affiliation:
Analytical Laboratories, Dow Chemical Company, Midland, Michigan 48674
Dennis L. Hasha
Affiliation:
Analytical Laboratories, Dow Chemical Company, Midland, Michigan 48674

Abstract

Hypothetical model structures for magadiite and sodium octosilicate, based on the structure of the zeolite dachiardite, are proposed that consist of layers of 6-member rings of tetrahedra and blocks containing 5-member rings attached to both sides of the layers. The infrared (IR) and nuclear magnetic resonance spectra of magadiite and sodium octosilicate have features in common with spectra of zeolites in the ZSM-5 and mordenite groups. A peak at 1225 cm-1 in the IR spectra of magadiite and sodium octosilicate is characteristic of zeolites containing 5-member rings, such as ZSM-5- and mordenite-type zeolites. The defect structures of pentasil zeolites may therefore be akin to layered alkali metal silicates containing zeolite-like domains, in which part of the silanol groups from adjacent silicate layers are condensed (cross-linked) forming siloxane linkages.

Type
Research Article
Copyright
Copyright © 1988, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Presented at Symposium on the Geology, Genesis, Synthesis, and Use of Zeolites at 38th annual meeting of The Clay Minerals Society, Jackson, Mississipi, October 1986, convened by R. J. Donahoe. Manuscript reviewing and editing coordinated by R. J. Donahoe and R. A. Sheppard.

References

Bapts, G., Delmotte, L., Guth, J. L. and Kalt, A., 1983 Natural hydrous silicates: Synthesis and new data about kenyaite Fortschr. Miner. 61 1214.Google Scholar
Beneke, K. and Lagaly, G., 1977 Kanemite-innercrystalline reactivity and relations to other sodium silicates Amer. Mineral. 62 763771.Google Scholar
Boxhom, G., Kortbeek, A G T G Hays, G. R. and Alma, N. C. M., 1984 A high resolution solid state 29Si n.m.r. study of ZSM-5 type zeolites Zeolites 4 1521.Google Scholar
Brindley, G. W., 1969 Unit cell of magadiite in air, in vacuo, and under other conditions Amer. Mineral. 54 15831591.Google Scholar
Brunner, G. O., 1987 Reaction of H-ZSM-5 with water as studied by i.r. spectroscopy Zeolites 7 911.CrossRefGoogle Scholar
Debras, G., Nagy, J. B., Gabelica, Z., Bodart, P. and Jacobs, P. A., 1983 Determination of silicon-aluminium orderings in mordenite and its aluminium-deficient forms using high-resolution magic-angle-spinning 29Si-NMR Chem. Lett. 2 199202.CrossRefGoogle Scholar
Derouane, E. G., Kaliaguine, S. and Mahay, A., 1984 Molecular shape-sensitive catalysis in zeolites Studies in Surface Science and Catalysis, Vol. 19 Amsterdam Elsevier 117.Google Scholar
Derouane, E. G. and Fripiat, J. J., 1985 Non-empirical quantum chemical study of the sitting and pairing of aluminium in the MFI framework Zeolites 5 165172.CrossRefGoogle Scholar
Eugster, H. P., 1967 Hydrous sodium silicates from Lake Magadi, Kenya: Precursors of bedded chert Science 157 11771180.CrossRefGoogle ScholarPubMed
Gatti, F., Moretti, E., Padovan, M., Solari, M. and Zamboni, V., 1986 Effect of the aluminium content on the ZSM-5 zeolite crystallization in the presence of alkanolamine Zeolites 6 312316.CrossRefGoogle Scholar
Gottardi, G. and Meier, W. M., 1963 The crystal structure of dachiardite Z. Kristallogr. 119 5364.CrossRefGoogle Scholar
Iier, R. K., 1964 Ion-exchange properties of crystalline silica J. Colloid Sci. 19 648657.Google Scholar
Itabashi, K., Okada, T., Igawa, K., Murayami, Y., Iijima, A. and Ward, J. W., 1986 Distribution of aluminium in synthetic mordenites Proc. 7th Int. Zeolite Conf, Tokyo, 1986 Amsterdam Kodanska, Elsevier 369376.Google Scholar
Jacobs, P. A., Beyer, H.K. and Valyon, J., 1981 Properties of the end members in the pentasil-family of zeolites: Characterization as adsorbents Zeolites 1 161168.CrossRefGoogle Scholar
Jansen, J. C., van der Gaag, F. J. and van Bekkum, H., 1984 Identification of ZSM-type and other 5-ring containing zeolites by i.r. spectroscopy Zeolites 4 369372.CrossRefGoogle Scholar
Johan, Z. and Maglione, G. F., 1972 La kanemite, nouveau silicate de sodium hydraté de néoformation Bull. Soc. Fr. Minéral. Cristallogr. 95 371382.Google Scholar
Kalt, A., 1968 Une silice hydratée cristallisée: Préparation, structure, propriétés chimiques France Univ. Strasbourg, Strasbourg 7179.Google Scholar
Klinowski, J., 1984 Nuclear magnetic resonance studies of zeolites Prog. NMR Spectrosc. 16 239309.CrossRefGoogle Scholar
Lagaly, G., Beneke, K. and Weiss, A., 1975 Magadiite and H-magadiite: I. Sodium magadiite and some of its derivatives Amer. Mineral. 60 642649.Google Scholar
Meier, W. M., Sand, L. B. and Mumpton, F. A., 1978 Constituent sheets in the zeolite frameworks of the mordenite group Natural Zeolites: Occurrence, Properties, Use New York Pergamon Press, Elmsford 99103.Google Scholar
Meier, W. M. and Villager, H., 1969 Distance refinement for determining the atomic coordinates of idealized lattice structures Z. Kristallogr. 129 411423.CrossRefGoogle Scholar
Nagy, J. B., Gabelica, Z. and Derouane, E. G., 1982 A cross-polarization magic-angle-spinning 29Si nmr identification of the silanol group resonance in ZSM-5 zeolites Chem. Lett. 11051108.CrossRefGoogle Scholar
Pinnavaia, T. J., Johnson, I. D. and Lipsicas, M., 1986 A 29Si MAS study of tetrahedral site distributions in the layered silicic acid H+-magadiite (H2Si4OwnH2O) and in Na+-magadiite (Na2Si14O29· nH2O) J. Sol. State Chem. 63 118121.CrossRefGoogle Scholar
Rojo, J. M., Ruiz-Hitzky, E., Sanz, J. and Serratosa, J. M., 1983 Characterization of surface Si-OH groups in layer silicic acids by IR and NMR spectroscopies Rev. Chem. Mineral. 20 807816.Google Scholar
Schwieger, W., Heidemann, D. and Bergk, K.-H., 1985 High-resolution solid-state silicon-29 nuclear magnetic resonance spectroscopic studies of synthetic sodium silicate hydrates Revue Chemie Minérale 22 639650.Google Scholar
Tsuchida, I., 1982 Infrared spectroscopic study of hydroxyl groups on silica surfaces J. Phys. Chem. 86 41074112.CrossRefGoogle Scholar
Woolery, G. L., Alemany, L. B., Dessau, R. M. and Chester, A. W., 1986 Spectroscopic evidence for the presence of internal silanols in highly siliceous ZSM-5 Zeolites 6 1416.CrossRefGoogle Scholar