Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-17T01:08:01.264Z Has data issue: false hasContentIssue false

Key Steps Influencing the Formation of Aluminosilicate Nanotubes by the Fluoride Route

Published online by Cambridge University Press:  01 January 2024

Atika Chemmi
Affiliation:
Pôle Matériaux à Porosité Contrôlée (MPC), Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, Universitéde Haute Alsace (UHA), ENSCMu, 3b rue Alfred Werner 68093 Mulhouse Cedex, France
Jocelyne Brendle*
Affiliation:
Pôle Matériaux à Porosité Contrôlée (MPC), Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, Universitéde Haute Alsace (UHA), ENSCMu, 3b rue Alfred Werner 68093 Mulhouse Cedex, France
Claire Marichal
Affiliation:
Pôle Matériaux à Porosité Contrôlée (MPC), Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, Universitéde Haute Alsace (UHA), ENSCMu, 3b rue Alfred Werner 68093 Mulhouse Cedex, France
Benedicte Lebeau
Affiliation:
Pôle Matériaux à Porosité Contrôlée (MPC), Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, Universitéde Haute Alsace (UHA), ENSCMu, 3b rue Alfred Werner 68093 Mulhouse Cedex, France
*
*E-mail address of corresponding author: jocelyne.brendle@uha.fr

Abstract

Imogolite is usually formed by means of a three-step process involving the use of large amounts of water with long crystallization times and low yields, preventing large-scale synthesis. These drawbacks can be overcome by synthesis in the presence of fluoride, an approach which has been demonstrated to be suitable for the synthesis of other phyllosilicates. In the present study, the nature of the Al and Si sources, the Al/Si molar ratio, the volume of H2O for the redispersion of the gel after desalination, the F/Si molar ratio, as well as the crystallization temperature and time have been varied to investigate their role in the crystallization of imogolite. The structural properties of the as-synthesized samples were characterized by X-ray diffraction, infrared spectroscopy, and 29Si, 27Al, and 19F magic angle spinning nuclear magnetic resonance spectroscopy. The results show that the imogolite nanotubes can be prepared with high yields (>55%) from AlCl3·6H2O and Na4SiO4 aqueous solutions with an Al/Si molar ratio of 2.5, addition of HF for a F/Si molar ratio of 0.1–0.2, and 4 days of crystallization at 98°C.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, W.C. Smith, D.M. Huling, J.C. Kim, Y.W. Bailey, J.K. and Brinker, C.J., 1993 Gas/vapor adsorption in imogolite: a microporous tubular aluminosilicate Langmuir 9 10511057.CrossRefGoogle Scholar
Adams, J.M., 1980 Gas chromatographic adsorption studies on synthetic imogolite Journal of Chromatography A 188 97106.CrossRefGoogle Scholar
Arancibia-Miranda, N. Escudey, M. Molina, M. and García-González, M., 2013 Kinetic and surface study of single-walled aluminosilicate nanotubes and their precursors Nanomaterials 3 126140.CrossRefGoogle ScholarPubMed
Barrett, S.M. Budd, P.M. and Price, C., 1991 The synthesis and characterization of imogolite European Polymer Journal 27 609612.CrossRefGoogle Scholar
Barron, P.F. Wilson, M.A. Campbell, A.S. and Frost, R.L., 1982 Detection of imogolite in soils using solid state 29Si NMR Nature 299 616618.CrossRefGoogle Scholar
Bishop, J.L. Rampe, E.B. Bish, D.L. Abidin, Z.L. Baker, L.L. Matsue, N. and Henmi, T., 2013 Spectral and hydration properties of allophane and imogolite Clays and Clay Minerals 61 5774.CrossRefGoogle Scholar
Bleta, R. Jaubert, O. Gressier, M. and Menu, M.-J., 2011 Rheological behaviour and spectroscopic investigations of cerium-modified AlO(OH) colloidal suspensions Journal of Colloid and Interface Science 363 557565.CrossRefGoogle ScholarPubMed
Chemmi, A. Brendlé, J. Marichal, C. and Lebeau, B., 2013 A novel fluoride route for the synthesis of aluminosilicate nanotubes Nanomaterials 3 117125.CrossRefGoogle ScholarPubMed
Clark, C.J., 1984 Chemisorption of Cu(II) and Co(II) on allophane and imogolite Clays and Clay Minerals 32 300310.CrossRefGoogle Scholar
Cradwick, P.C.G. Farmer, V.C. Russell, J.D. Masson, C.R. Wada, K. and Yoshinaga, N., 1972 Imogolite, a hydrated aluminium silicate of tubular structure Nature Physical Science 240 187189.CrossRefGoogle Scholar
Denaix, L. Lamy, I. and Bottero, J.Y., 1999 Structure and affinity towards Cd2+, Cu2+, Pb2+ of synthetic colloidal amorphous aluminosilicates and their precursors Colloids and Surfaces A: Physicochemical and Engineering Aspects 158 315325.CrossRefGoogle Scholar
Farmer, V.C., 1983 Synthetic imogolite: Properties, synthesis, and possible applications Clay Minerals 18 459472.CrossRefGoogle Scholar
Farmer, V.C. Fraser, A.R., Mortland, M.M. and Farmer, V.C., 1979 Synthetic imogolite, a tubular hydroxyaluminium silicate Proceedings of the VI International Clay Conference, Oxford, UK Amsterdam Elsevier.Google Scholar
Farmer, V.C. Fraser, A.R. and Tait, J.M., 1977 Synthesis of imogolite: a tubular aluminium silicate polymer. Journal of the Chemical Society Clinical Communications 12 462463.Google Scholar
Goodman, B.A. Russell, J.D. Montez, B. Oldfield, E. and Kirkpatrick, R.J., 1985 Structural studies of imogolite and allophanes by aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopy Physics and Chemistry of Minerals 12 342346.CrossRefGoogle Scholar
Guimarães, L. Pinto, Y.N. Lourenço, M.P. and Duarte, H.A., 2013 Imogolite-like nanotubes: structure, stability, electronic and mechanical properties of the phosphorous and arsenic derivatives Physical Chemistry Chemical Physics 15 43034309.CrossRefGoogle ScholarPubMed
Gustafsson, J.P., 2001 The surface chemistry of imogolite Clays and Clay Minerals 49 7380.CrossRefGoogle Scholar
Hongo, T. Sugiyama, J. Yamazaki, A. and Yamasaki, A., 2013 Synthesis of imogolite from rice husk ash and evaluation of its acetaldehyde adsorption ability Industrial & Engineering Chemistry Research 52 21112115.CrossRefGoogle Scholar
Horvath, G. and Kawazoe, K., 1983 Method for the calculation of effective pore size distribution in molecular sieve carbon Journal of Chemical Engineering of Japan 16 470475.CrossRefGoogle Scholar
Hu, J. Kamali Kannangara, G.S. Wilson, M.A. and Reddy, N., 2004 The fused silicate route to protoimogolite and imogolite Journal of Non-Crystalline Solids 347 224230.CrossRefGoogle Scholar
Huve, L. Delmotte, L. Martin, P. Dred, R. Le Baron, J. and Saehr, D., 1992 19F MAS-NMR study of structural fluorine in some natural and synthetic 2:1 layer silicates Clays and Clay Minerals 40 186191.CrossRefGoogle Scholar
Imamura, S. Kokubu, T. Yamashita, T. Okamoto, Y. Kajiwara, K. and Kanai, H., 1996 Shape-selective copper-loaded imogolite catalyst Journal of Catalysis 160 137139.CrossRefGoogle Scholar
Iyoda, F. Hayashi, S. Arakawa, S. John, B. Okamoto, M. Hayashi, H. and Yuan, G., 2012 Synthesis and adsorption characteristics of hollow spherical allophane nano-particles Applied Clay Science 56 7783.CrossRefGoogle Scholar
Jiravanichanun, N. Yamamoto, K. Irie, A. Otsuka, H. and Takahara, A., 2009 Preparation of hybrid films of aluminosilicate nanofiber and conjugated polymer Synthetic Metals 159 885888.CrossRefGoogle Scholar
Johnson, L.M. and Pinnavaia, T.J., 1990 Silylation of a tubular aluminosilicate polymer (imogolite) by reaction with hydrolyzed (γ-aminopropyl)triethoxysilane Langmuir 6 307311.CrossRefGoogle Scholar
Kleber, M. Schwendenmann, L. Veldkamp, E. Rößbner, J. and Jahn, R., 2007 Halloysite versus gibbsite: Silicon cycling as a pedogenetic process in two lowland neotropical rain forest soils of La Selva, Costa Rica Geoderma 138 111.CrossRefGoogle Scholar
Koenderink, G.H. Kluijtmans, S.G.J. and Philipse, A.P., 1999 On the synthesis of colloidal imogolite fibers Journal of Colloid and Interface Science 216 429431.CrossRefGoogle ScholarPubMed
Kuroda, Y. Fukumoto, K. and Kuroda, K., 2012 Uniform and high dispersion of gold nanoparticles on imogolite nanotubes and assembly into morphologically controlled materials Applied Clay Science 55 1017.CrossRefGoogle Scholar
Levard, C. Rose, J. Masion, A. Doelsch, E. Borschneck, D. Olivi, L. Dominici, C. Grauby, O. Woicik, J.C. and Bottero, J.-Y., 2008 Synthesis of large quantities of single-walled aluminogermanate nanotube Journal of the American Chemical Society 130 58625863.CrossRefGoogle ScholarPubMed
Levard, C. Masion, A. Rose, J. Doelsch, E. Borschneck, D. Dominici, C. Ziarelli, F. and Bottero, J.-Y., 2009 Synthesis of imogolite fibers from decimolar concentration at low temperature and ambient pressure: A promising route for inexpensive nanotubes Journal of the American Chemical Society 131 1708017081.CrossRefGoogle ScholarPubMed
Ma, W. Otsuka, H. and Takahara, A., 2011 Preparation and properties of PVC/PMMA-g-imogolite nanohybrid via surface-initiated radical polymerization Polymer 52 55435550.CrossRefGoogle Scholar
Massiot, D. Fayon, F. Capron, M. King, I. Calv, S. Le Alonso, B. Durand, J.-O. Bujoli, B. Gan, Z. and Hoatson, G., 2002 Modelling one- and two-dimensional solid-state NMR spectra Magnetic Resonance in Chemistry 40 7076.CrossRefGoogle Scholar
Montarges-Pelletier, E. Bogenez, S. Pelletier, M. Razafitianamaharavo, A. Ghanbaja, J. Lartiges, B. and Michot, L., 2005 Synthetic allophane-like particles: textural properties Colloids and Surfaces A: Physicochemical and Engineering Aspects 255 110.CrossRefGoogle Scholar
Mukherjee, S. Bartlow, V.M. and Nair, S., 2005 Phenomenology of the growth of single-walled aluminosilicate and aluminogermanate nanotubes of precise dimensions Chemistry of Materials 17 49004909.CrossRefGoogle Scholar
Mukherjee, S. Kim, K. and Nair, S., 2007 Short, highly ordered, single-walled mixed-oxide nanotubes assembled from amorphous nanoparticles Journal of the American Chemical Society 129 68206826.CrossRefGoogle ScholarPubMed
Ohashi, F. Tomura, S. Akaku, K. Hayashi, S. and Wada, S.- I., 2004 Characterization of synthetic imogolite nanotubes as gas storage Journal of Materials Science 39 17991801.CrossRefGoogle Scholar
Priya, G.K. Padmaja, P. Warrier, K.G.K. Damodaran, A.D. and Aruldhas, G., 1997 Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by Fourier transform infrared spectroscopy Journal of Materials Science Letters 16 15841587.CrossRefGoogle Scholar
Romero, A.A. Alba, M.D. Zhou, W. and Klinowski, J., 1997 Synthesis and characterization of the mesoporous silicate molecular sieve MCM-48 The Journal of Physical Chemistry B 101 52945300.CrossRefGoogle Scholar
Suzuki, M. Inukai, K., Kijima, T., 2010 Synthesis and applications of imogolite nanotubes Inorganic and Metallic Nanotubular Materials Berlin Springer.Google Scholar
Theng, B.K.G. Russell, M. Churchman, G.J. and Parfitt, R.L., 1982 Surface properties of allophane, halloysite, imogolite Clays and Clay Minerals 30 143149.CrossRefGoogle Scholar
Thomas, B. Coradin, T. Laurent, G. Valentin, R. Mouloungui, Z. Babonneau, F. and Baccile, N., 2012 Biosurfactant-mediated one-step synthesis of hydrophobic functional imogolite nanotubes RSC Advances 2 426435.CrossRefGoogle Scholar
Umegaki, T. Hosoya, T. Toyama, N. Xu, Q. and Kojima, Y., 2014 Fabrication of hollow silica—zirconia composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane Journal of Alloys and Compounds 608 261265.CrossRefGoogle Scholar
Wada, S.-I., 1987 Imogolite synthesis at 25°C Clays and Clay Minerals 35 379384.CrossRefGoogle Scholar
Wada, S.-I. Eto, A. and Wada, K., 1979 Synthetic allophane and imogolite Journal of Soil Science 30 347355.CrossRefGoogle Scholar
Wilson, M.A. Lee, G.S. and Taylor, R.C., 2001 Tetrahedral rehydration during imogolite formation Journal of Non-Crystalline Solids 296 172181.CrossRefGoogle Scholar
Wilson, M.A. Lee, G.S.H. and Taylor, R.C., 2002 Benzene displacement on imogolite Clays and Clay Minerals 50 348351.CrossRefGoogle Scholar
Yamamoto, K. Otsuka, H. Takahara, A. and Wada, S.-I., 2002 Preparation of a novel (polymer/inorganic nanofiber) composite through surface modification of natural aluminosilicate nanofiber The Journal of Adhesion 78 591602.CrossRefGoogle Scholar
Yoshinaga, N. and Aomine, S., 1962 Imogolite in some ando soils Soil Science and Plant Nutrition 8 2229.CrossRefGoogle Scholar
Yucelen, G.I. Choudhury, R.P. Leisen, J. Nair, S. and Beckham, H.W., 2012 Defect structures in aluminosilicate single-walled nanotubes: A solid-state nuclear magnetic resonance investigation The Journal of Physical Chemistry C 116 1714917157.CrossRefGoogle Scholar
Yucelen, G.I. Choudhury, R.P. Vyalikh, A. Scheler, U. Beckham, H.W. and Nair, S., 2011 Formation of single-walled aluminosilicate nanotubes from molecular precursors and curved nanoscale intermediates Journal of American Chemical Society 133 53975412.CrossRefGoogle ScholarPubMed
Zanzottera, C. Armandi, M. Esposito, S. Garrone, E. and Bonelli, B., 2012 CO2 adsorption on aluminosilicate single-walled nanotubes of imogolite type The Journal of the Physical Chemistry C 116 2041720425.CrossRefGoogle Scholar