Hostname: page-component-cb9f654ff-hqlzj Total loading time: 0 Render date: 2025-08-29T01:44:03.863Z Has data issue: false hasContentIssue false

Lamellar nanostructure in ‘Somasif’-based organoclays

Published online by Cambridge University Press:  01 January 2024

Mikhail Y. Gelfer
Affiliation:
Chemistry Department, Stony Brook University, Stony Brook, NY 11794, USA
Christian Burger
Affiliation:
Chemistry Department, Stony Brook University, Stony Brook, NY 11794, USA
Pranav Nawani
Affiliation:
Chemistry Department, Stony Brook University, Stony Brook, NY 11794, USA
Benjamin S. Hsiao*
Affiliation:
Chemistry Department, Stony Brook University, Stony Brook, NY 11794, USA
Benjamin Chu
Affiliation:
Chemistry Department, Stony Brook University, Stony Brook, NY 11794, USA
Mayu Si
Affiliation:
Materials Science and Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA
Miriam Rafailovich
Affiliation:
Materials Science and Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA
Grazyna Panek
Affiliation:
Max-Planck Institute for Polymer Research, Postfach 3148, 55021 Mainz, Germany
Gunnar Jeschke
Affiliation:
Max-Planck Institute for Polymer Research, Postfach 3148, 55021 Mainz, Germany
Alexander Y. Fadeev
Affiliation:
Chemistry Department, Seton Hall University, 800 South Orange Avenue, South Orange, NJ 07009, USA
Jeffrey W. Gilman
Affiliation:
Fire Research Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8665, USA
*
*E-mail address of corresponding author: bhsiao@notes.cc.sunysb.edu

Abstract

Thermally induced lamellar structure changes due to phase transition and degradation in organoclays based on a synthetic ‘Somasif’ mineral and two organic surfactants, di-methyl dihydro-ditallow ammonia chloride (DMDTA) and tri-butyl-hexadecyl phosphonium bromide (HTBP) were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, in situ simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) over the temperature range 30–280°C. Results indicated that the surfactant layer in ‘Somasif’-based organoclays underwent thermally induced melting-like order-disorder transition followed by desorption of surfactant molecules, resulting in drastic changes in the character of the layer periodicity. The transition temperature (Ttr), determined from the endothermic transition in DSC, was found to depend strongly on the type and the content of surfactant incorporated. Temperature-resolved SAXS indicated complex intercalated layered structures, containing multiple lamellar stack populations of two different organic layer thicknesses. A weak scattering peak (s0), located at exactly the half angular position of the strong first scattering maximum s1 (s0 = 0.5s1), was found in all tested ‘Somasif’ clays. The presence of this peak can be attributed to a slight breaking of the translational symmetry in the layered structure, causing the 1D repeat period in real space to be doubled. In other words, some portions of layers are grouped into pairs and a single pair forms the new repeat unit. This arrangement is reminiscent of the Peierls-like distortion.

Information

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alexander, L.E., (1969) X-ray Diffraction Methods in Polymer Science New York Wiley-Interscience.Google Scholar
Alexandre, M. and Dubois, P., (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials Materials Science and Engineering R: Reports 28 163 10.1016/S0927-796X(00)00012-7.CrossRefGoogle Scholar
Brindley, G.W. Brown, G., Brindley, G.W. and Brown, G., (1980) Order-Disorder in Clay Mineral Structures Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 125197.10.1180/mono-5.2CrossRefGoogle Scholar
Chu, B. and Hsiao, B.S., (2001) Small-angle X-ray scattering of polymers Chemical Reviews 101 17271761 10.1021/cr9900376.10.1021/cr9900376CrossRefGoogle ScholarPubMed
Farmer, V.C., (1974) The Infrared Spectra of Minerals London Mineralogical Society 10.1180/mono-4 539 pp.10.1180/mono-4CrossRefGoogle Scholar
Gates, W.P., (2004) Crystalline swelling of organo-modified clays in ethanol-water solutions Applied Clay Science 27 112 10.1016/j.clay.2003.12.001.10.1016/j.clay.2003.12.001CrossRefGoogle Scholar
Gelfer, M. Burger, C. Fadeev, A. Sics, I. Chu, B. Hsiao, B.S. Heintz, A. Kojo, K. Hsu, S.-L. Si, M. and Rafailovich, M., (2004) Thermally induced phase transitions and morphological changes in organoclays Langmuir 20 37463758 10.1021/la035361h.10.1021/la035361hCrossRefGoogle ScholarPubMed
Gelfer, M.Y. Burger, C. Chu, B. Hsiao, B.S. Drozdov, A.D. Si, M. Rafailovich, M. Sauer, B.B. and Gilman, J.W., (2005) Relationships between structure and rheology in model nanocomposites of ethylene-vinyl-based copolymers and organoclays Macromolecules 38 37653775 10.1021/ma0475075.CrossRefGoogle Scholar
Giannelis, E.P. Krishnamoorti, R. and Manias, E., (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes Advanced Polymer Science 138 107147 10.1007/3-540-69711-X_3.10.1007/3-540-69711-X_3CrossRefGoogle Scholar
Hackett, E. Manias, E. and Giannelis, E.P., (1998) Molecular dynamics simulations of organically modified layered silicates Journal of Chemical Physics 108 74107415 10.1063/1.476161.10.1063/1.476161CrossRefGoogle Scholar
Hair, M.L., (1967) IR spectroscopy in Surface Chemistry New York Marcel Dekker.Google Scholar
Hosemann, R. and Bagchi, S.N., (1962) Direct Analysis of Diffraction by Matter Amsterdam, The Netherlands North Holland Publishing Co..Google Scholar
Ijdo, W.L. and Pinnavaia, T.J., (1998) Staging of organic and inorganic gallery cations in layered silicate heterostructures Journal of Solid State Chemistry 139 281289 10.1006/jssc.1998.7842.CrossRefGoogle Scholar
Ijdo, W.L. and Pinnavaia, T.J., (1999) Solid solution formation in amphiphilic organic-inorganic clay heterostructures Chemistry of Materials 11 32273231 10.1021/cm990294r.10.1021/cm990294rCrossRefGoogle Scholar
Johns, W.D. and Sen Gupta, P.K., (1967) Vermiculite-alkyl ammonium complexes American Mineralogist 52 17061724.Google Scholar
Jonas, E.C. Grim, R.E. and Mackenzie, R.C., (1957) Differential thermal analysis using controlled atmosphere Differential Thermal Analysis London Mineralogical Society 389403.Google Scholar
Kojo, K. Ge, S. Takahara, A. and Kajiyama, T., (1998) Molecular aggregation state of n-octadecyltrichlorosilane monolayer prepared at an air/water interface Langmuir (Letter) 14 971974 10.1021/la970040p.Google Scholar
Krishnamoorti, R. Vaia, R.A. and Giannelis, E.P., (1996) Structure and dynamics of polymer-layered silicate Nanocomposites Chemistry of Materials 8 17281734 10.1021/cm960127g.10.1021/cm960127gCrossRefGoogle Scholar
Lagaly, G., (1986) Interactions of alkylamines with different types of layered Compounds Solid State Ionics 22 4351 10.1016/0167-2738(86)90057-3.CrossRefGoogle Scholar
Lagaly, G. and Kleeberg, H., (1987) Water and solvents on surfaces bristling with alkyl chains Interactions of Water in Ionic and Nonionic Hydrates Berlin, Heidelberg, New York Springer 229240 10.1007/978-3-642-72701-6_42.CrossRefGoogle Scholar
Lagaly, G. Fitz, S. and Weiss, A., (1975) Kink block structures in clay organic complexes Clays and Clay Minerals 23 4554 10.1346/CCMN.1975.0230107.10.1346/CCMN.1975.0230107CrossRefGoogle Scholar
Lagaly, G. Witter, R. Sander, H., Ottewill, R.H. Rochester, C.H. and Smith, A.L., (1983) Water on hydrophobic surfaces Adsorption from Solution London Academic Press 6577 10.1016/B978-0-12-530980-6.50009-7.10.1016/B978-0-12-530980-6.50009-7CrossRefGoogle Scholar
LeBaron, P.C. Wang, Z. and Pinnavaia, T.J., (1999) Polymer-layered silicate nanocomposites: An overview Applied Clay Science 15 1129 10.1016/S0169-1317(99)00017-4.10.1016/S0169-1317(99)00017-4CrossRefGoogle Scholar
Lee, J.W. Lim, Y.T. and Park, O.O., (2000) Thermal characteristics of organoclay and their effects upon the formation of polypropylene/organoclay nanocomposites Polymer Bulletin 45 191198 10.1007/s002890070048.10.1007/s002890070048CrossRefGoogle Scholar
Malik, W.U. Srivastava, S.K. and Gupta, D., (1972) Studies on the interaction surfactants with clay minerals Clay Minerals 9 369382 10.1180/claymin.1972.009.4.02.10.1180/claymin.1972.009.4.02CrossRefGoogle Scholar
Moraru, V., (2001) Structure formation of alkylammonium montmorillonites in organic media Applied Clay Science 19 1126 10.1016/S0169-1317(01)00053-9.CrossRefGoogle Scholar
Panek, G. Schleidt, S. Mao, Q. Wolkenhauer, M. Spiess, H.W. and Jeschke, G., (2006) Heterogeneity of the surfactant layer in organically modified silicates and polymer/layered silicate composites Macromolecules 39 21912200 10.1021/ma0527449.10.1021/ma0527449CrossRefGoogle Scholar
Parikh, A.N. Liedberg, B. Atre, S.V. Ho, M. and Allara, D.L., (1995) Correlation of molecular organization and substrate wettability in the self-assembly of n-alkylsiloxane monolayers Journal of Physical Chemistry 99 999610008 10.1021/j100024a049.10.1021/j100024a049CrossRefGoogle Scholar
Porter, M.D. Bright, T.B. Allara, D.L. and Chidsey, C.E.D., (1987) Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry Journal of American Chemical Society 109 35593568 10.1021/ja00246a011.10.1021/ja00246a011CrossRefGoogle Scholar
Reynolds, R.C., Brindley, G.W. and Brown, G., (1980) Interstratified clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 249305.CrossRefGoogle Scholar
Snyder, R.G. Strauss, H.L. and Elliger, C.A., (1982) Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains Journal of Physical Chemistry 86 51455150 10.1021/j100223a018.10.1021/j100223a018CrossRefGoogle Scholar
Tateyama, H. Nishimura, S. Tsunematsu, K. Jinnai, K. Adachi, Y. and Kimura, M., (1992) Synthesis of expandable fluorine mica from talc Clays and Clay Minerals 40 180185 10.1346/CCMN.1992.0400207.10.1346/CCMN.1992.0400207CrossRefGoogle Scholar
Vaia, R.A. and Giannelis, E.P., (1997) Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment Macromolecules 30 80008009 10.1021/ma9603488.10.1021/ma9603488CrossRefGoogle Scholar
Vaia, R.A. Teukolsky, R.K. and Giannelis, E.P., (1994) Interlayer structure and molecular environment of alkylammonium layered silicates Chemistry of Materials 6 10171022 10.1021/cm00043a025.10.1021/cm00043a025CrossRefGoogle Scholar
Walker, G.F., (1967) Interaction of n-alkylammonium ion with mica-type layer lattices Clay Minerals 7 129143 10.1180/claymin.1967.007.2.01.10.1180/claymin.1967.007.2.01CrossRefGoogle Scholar
Xie, W. Gao, Z.M. Pan, W.P. Hunter, D. Singh, A. and Vaia, R., (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite Chemistry of Materials 13 29792990 10.1021/cm010305s.10.1021/cm010305sCrossRefGoogle Scholar