Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T23:36:08.545Z Has data issue: false hasContentIssue false

Mechanisms and Crystal Chemistry of Oxidation in Annite: Resolving the Hydrogen-Loss and Vacancy Reactions

Published online by Cambridge University Press:  28 February 2024

D. G. Rancourt*
Affiliation:
Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
P. H. J. Mercier
Affiliation:
Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
D. J. Cherniak
Affiliation:
Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
S. Desgreniers
Affiliation:
Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
H. Kodama
Affiliation:
Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, Canada K1A 0C6
J.-L. Robert
Affiliation:
Centre de Recherches sur la Synthèse et Chimie des Minéraux, CNRS, F-45071, Orléans Cèdex 2, France
E. Murad
Affiliation:
Bayerisches Geologisches Landesamt, Postfach 389, Aussenstelle Marktredwitz, Leopoldstrasse 30, D-95603, Marktredwitz, Germany
*
E-mail of corresponding author: dgr@physics.Uottawa.Ca

Abstract

A synthetic octahedral-site-vacancy-free annite sample and its progressive oxidation, induced by heating in air, were studied by powder X-ray diffraction (pXRD), Mössbauer spectroscopy, nuclear reaction analysis (NRA), Raman spectroscopy, X-ray fluorescence (XRF) spectroscopy, gas chromatography (GC), thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscopy (SEM), and size-fraction separation methods. For a set heating time and as temperature is increased, the sample first evolves along an annite-oxyannite join, until all H is lost via the oxybiotite reaction (Fe2+ + OH ⇌ Fe3+ + O2− + H↑). It then evolves along an oxyannite-ferrioxyannite join, where ideal ferrioxyannite, KFe3+8/31/3AlSi3O12, is defined as the product resulting from complete oxidation of ideal oxyannite, KFe3+2Fe2+AlSi3O12, via the vacancy mechanism (3 Fe2+ ⇌ 2 Fe3+ + [6]□ + Fe↑). A pillaring collapse transition is observed as a collapse of c near the point where Fe2+/Fe=13 and all OH groups are predicted and observed to be lost. Quantitative analyses of H, using NRA, GC, and Raman spectroscopy, corroborate this interpretation and, in combination with accurate ferric/ferrous ratios from Mössbauer spectroscopy and lattice parameter determinations, allow a clear distinction to be made between vacancy-free and vacancy-bearing annite. The amount of Fe in ancillary Fe oxide phases produced by the vacancy mechanism is measured by Mössbauer spectroscopy to be 11.3(5)% of total Fe, in agreement with both the theoretical prediction of 1/9 = 11.1% and the observed TGA weight gain. The initiation of Fe oxide formation near the point of completion of the oxybiotite reaction (Fe2+/Fe=13) is corroborated by pXRD, TGA, Raman spectroscopy, and appearance of an Fe oxide hyperfine field sextet in the Mössbauer spectra. The region of Fe oxide formation is shown to coincide with a region of octahedral site vacancy formation, using a new Mössbauer spectral signature of vacancies that consists of a component at 2.2 mm/s in the [6]Fe3+ quadrupole splitting distribution (QSD). The crystal chemical behaviors of annite-oxyannite and of oxyannite-ferrioxyannite are best contrasted and compared to the behaviors of other layer-silicate series in terms of b vs. [D] (average octahedral cation to O bond length). This also leads to a diagnostic test for the presence of octahedral site vacancies in hydrothermally synthesized annite, based on a graph of b vs. Fe2+/Fe. The implications of the observed sequence of thermal oxidation reactions for the thermodynamic relevance of the oxybiotite and vacancy reactions in hydrothermal syntheses are examined and it is concluded that the oxybiotite reaction is the relevant reaction in the single-phase stability field of annite, at high hydrogen fugacity and using ideal starting cation stoichiometry. The vacancy reaction is only relevant in a multi-phase field, at lower hydrogen fugacity, that includes an Fe oxide equilibrium phase (magnetite) that can effectively compete for Fe, or when using non-ideal starting cation stoichiometries.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D.E. and Evans, H.T. Jr., 1973 Indexing and least-squares refinement of powder diffraction data Geological Survey Computer Contribution 20 126.Google Scholar
Benisek, A. Dachs, E. Redhammer, G. Tippelt, G. and Amthauer, G., 1996 Activity-composition relationship in Tschermak’s substituted Fe biotites at 700°C, 2 kbar Contributions to Mineral and Petrology 125 8599 10.1007/s004100050208.CrossRefGoogle Scholar
Borggaard, O.K. Lindgreen, H.B. and Mørup, S., 1982 Oxidation and reduction of structural iron in chlorite at 480°C Clays and Clay Minerals 30 353363 10.1346/CCMN.1982.0300506.CrossRefGoogle Scholar
Bouda, S. and Isaac, K.P., 1986 Influence of soil redox conditions on oxidation of biotite Clay Minerals 21 149157 10.1180/claymin.1986.021.2.04.CrossRefGoogle Scholar
Brindley, G.W. Lemaitre, J. and Newman, A.C.D., 1987 Thermal, oxidation and reduction reactions of clay minerals Chemistry of Clays and Clay Minerals London Mineralogical Society 319370.Google Scholar
Carter, G.F. Margrave, J.L. and Templeton, D.H., 1952 A high-temperature crystal modification of KO2 Acta Crystallographica 5 851 10.1107/S0365110X52002355.CrossRefGoogle Scholar
Chou, I.-M., 1997 The use and misuse of the fH2 sensors: a discussion of the paper by Dachs (1994) Contributions to Mineral and Petrology 128 302305 10.1007/s004100050310.CrossRefGoogle Scholar
Chung, F.H., 1974 Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing methods for quantitative multicomponent analysis Acta Crystallographica 7 519525.Google Scholar
Chung, F.H., 1974 Quantitative interpretation of X-ray diffraction analysis of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures Journal of Applied Crystallography 7 526531 10.1107/S0021889874010387.CrossRefGoogle Scholar
Clowe, C.A. Popp, R.K. and Fritz, S.J., 1988 Experimental investigation of the effect of oxygen fugacity on ferric-ferrous ratios and unit-cell parameters of four natural clinoamphiboles American Mineralogist 73 487499.Google Scholar
Cygan, G.L. Chou, I.-M. and Sherman, D.M., 1996 Reinvestigation of the annite = sanidine + magnetite + H2 reaction using the fH2-sensor technique American Mineralogist 81 475484 10.2138/am-1996-3-421.CrossRefGoogle Scholar
da Costa, G.M. De Grave, E. and Vandenberghe, R.E., 1998 Mössbauer studies of maghemite and Al-substituted maghemites Hyperfine Interactions 117 207243 10.1023/A:1012691209853.CrossRefGoogle Scholar
Dachs, E., 1994 Annite stability revised. 1. Hydrogen-sensor data for the reaction annite = sanidine + magnetite + H2 Contributions to Mineralogy and Petrology 117 229240 10.1007/BF00310865.CrossRefGoogle Scholar
Dachs, E. and Benisek, A., 1997 Annite stability revised: hydrogen-sensor data for the reaction annite = sanidine + magnetite + H2: additional results and reply to Chou Contributions to Mineralogy and Petrology 128 306311 10.1007/s004100050311.CrossRefGoogle Scholar
Dang, M.-Z. Rancourt, D.G. Dutrizac, J.E. Lamarche, G. and Provencher, R., 1998 Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials Hyperfine Interactions 117 271319 10.1023/A:1012655729417.CrossRefGoogle Scholar
Davis, B.L. Kath, R. and Splide, M., 1990 The reference intensity ratio: its measurement and significance Powder Diffraction 5 7678 10.1017/S0885715600015372.CrossRefGoogle Scholar
de Faria, D.L.A. Silva, S.V. and de Oliveira, M.T., 1997 Raman microspectroscopy of some iron oxides and oxyhydroxides Journal of Raman Spectroscopy 28 873878 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B.3.0.CO;2-B>CrossRefGoogle Scholar
De Grave, E. and Van Alboom, A., 1991 Evaluation of ferrous and ferric Mössbauer fractions Physics and Chemistry of Minerals 18 337342 10.1007/BF00200191.CrossRefGoogle Scholar
Donnay, G. Donnay, J.D.H. and Takeda, H., 1964 Trioctahedral one-layer micas. II. Predictions of the structure from composition and cell dimensions Acta Crystallographica 17 13741381 10.1107/S0365110X64003462.CrossRefGoogle Scholar
Eugster, H.P. and Wones, D.R., 1962 Stability relations of the ferruginous biotite, annite Journal of Petrology 3 82125 10.1093/petrology/3.1.82.CrossRefGoogle Scholar
Farmer, V.C. Russell, J.D. McHardy, W.J. Newman, A.C.D. Ahlrichs, J.L. and Rimsaite, J.Y.H., 1971 Evidence for loss of protons and octahedral iron from oxidized biotites and vermiculites Mineralogical Magazine 38 121137 10.1180/minmag.1971.038.294.01.CrossRefGoogle Scholar
Feeley, T.C. and Sharp, Z.D., 1996 Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers Geology 24 10211024 10.1130/0091-7613(1996)024<1021:CAHIEF>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Feldstein, S.N. Lange, R.A. Vennemann, T. and O’Neil, J.R., 1996 Ferric-ferrous ratios, H2O contents and D/H ratios of phlogopite and biotite from lavas of different tectonic regimes Contributions to Mineralogy and Petrology 126 5166 10.1007/s004100050235.CrossRefGoogle Scholar
Ferrow, E., 1987 Mössbauer effect and X-ray diffraction studies of synthetic iron bearing trioctahedral micas Physics and Chemistry of Minerals 14 276280 10.1007/BF00307994.CrossRefGoogle Scholar
Ferrow, E., 1990 The relation between c dimension and exchange components in micas Mineralogy and Petrology 43 2325 10.1007/BF01164219.CrossRefGoogle Scholar
Ferrow, E. and Annersten, H., 1984 Ferric iron in trioctahedral micas Uppsala, Sweden University of Uppsala 24 pp.Google Scholar
Gilkes, R.J. Young, R.C. and Quirk, J.P., 1972 The oxidation of octahedral iron in biotite Clays and Clay Minerals 20 303315 10.1346/CCMN.1972.0200507.CrossRefGoogle Scholar
Gilkes, R.J. Young, R.C. and Quirk, J.P., 1972 Oxidation of ferrous iron in biotite Nature, Physical Science 236 8991 10.1038/physci236089b0.CrossRefGoogle Scholar
Goodman, B.A. and Wilson, M.J., 1973 A study of the weathering of a biotite using the Mössbauer effect Mineralogical Magazine 39 448454 10.1180/minmag.1973.039.304.07.CrossRefGoogle Scholar
Güttler, B. Niemann, W. and Redfern, S.A.T., 1989 EXAFS and XANES spectroscopy study of the oxidation and deprotonation of biotite Mineralogical Magazine 53 591602 10.1180/minmag.1989.053.373.10.CrossRefGoogle Scholar
Hazen, R.M. and Wones, D.R., 1972 The effect of cation substitutions on the physical properties of trioctahedral micas American Mineralogist 57 103129.Google Scholar
Hazen, R.M. and Wones, D.R., 1978 Predicted and observed compositional limits of trioctahedral micas American Mineralogist 63 885892.Google Scholar
Hellner, E. and Euler, R., 1957 Hydrothermal und röntgenographische untersuchungen an gesteinsbildenden mineralen—I Geochimica et Cosmochimica Acta 12 4756 10.1016/0016-7037(57)90016-9.CrossRefGoogle Scholar
Hogg, C.S. and Meads, R.E., 1975 A Mössbauer study of thermal decomposition of biotites Mineralogical Magazine 40 7988 10.1180/minmag.1975.040.309.11.CrossRefGoogle Scholar
Hubbard, C.R. and Snyder, R.L., 1988 RIR—Measurement and use in quantitative XRD Powder Diffraction 3 7477 10.1017/S0885715600013257.CrossRefGoogle Scholar
Ivanitskiy, V.P. Kalinechenko, A.M. Matyash, I.V. and Khomyak, T.P., 1975 Mössbauer and PMR studies of oxidation and dehydroxylation in biotite Geochemistry International 12 18641871.Google Scholar
Kodama, H. McKeague, J.A. Tremblay, R.J. Gosselin, J.R. and Townsend, M.G., 1977 Characterization of iron oxide compounds in soils by Mössbauer and other methods Canadian Journal of Earth Sciences 14 115 10.1139/e77-001.CrossRefGoogle Scholar
Lagarec, K. and Rancourt, D.G. (1998) Recoil: Spectral analysis and data treatment software for Mössbauer spectroscopy. http://www.science.uottawa.ca/phy/∼recoil/.Google Scholar
Lalonde, A.E. Rancourt, D.G. and Ping, J.Y., 1998 Accuracy of ferric/ferrous determinations in micas: a comparison of Mössbauer spectroscopy and the Pratt and Wilson wet-chemical methods Hyperfine Interactions 117 175204 10.1023/A:1012607813487.CrossRefGoogle Scholar
Lanford, W.A., Tesmer, J.R. and Nastasi, M.A., 1995 Nuclear reactions for hydrogen analysis Handbook of Modern Jon Beam Materials Analysis Pittsburg, Philadelphia Materials Research Society 193204.Google Scholar
Lanford, W.A. Trautvetter, H.P. Ziegler, J.F. and Keller, J., 1976 New precision technique for measuring the concentration versus depth of hydrogen in solids Applied Physics Utters 28 566568 10.1063/1.88826.Google Scholar
Lear, P.R. and Stucki, J.W., 1985 Role of structural hydrogen in the reduction and reoxidation of iron in nontronite Clays and Clay Minerals 33 539545 10.1346/CCMN.1985.0330609.CrossRefGoogle Scholar
McKeown, D.A. Bell, M.I. and Etz, E.S., 1999 Raman spectra and vibrational analysis of the trioctahedral mica phlogopite American Mineralogist 84 970976 10.2138/am-1999-5-633.CrossRefGoogle Scholar
Mercier, P.H.J., 1996 An 57Fe Mössbauer spectroscopy study of the effects of different equilibration temperatures and oxygen fugacity buffers on the Fe2+ and Fe3+ site populations in synthetic annite mica Ottawa, Canada University of Ottawa 141 pp.Google Scholar
Mercier, P.H.J., 2001 Crystal chemistry of trioctahedral layer silicates: testing the limits of simple geometrical models (in preparation) Ottawa, Canada University of Ottawa.Google Scholar
Mercier, P.H.J., Rancourt, D.G. and Berman, R.G. (1996) Aspects of the crystal chemistry of annite mica. P. 50 in: Conference Proceedings, ICAME-95, Bologna, SIF.Google Scholar
Mercier, P.H.J., Rancourt, D.G., Berman, R.G. and Robert, J.-L. (1999) Control of site populations, at synthesis, by inter-sheet differential thermal expansion in a 2:1 layer silicate. Pp. 221228 in: Clays for our Future (Kodama, H., Mermut, A.R. and Torrance, J.K., editors). Proceedings of the 11th International Clay Conference, Ottawa, Canada.Google Scholar
Murad, E. and Johnston, J.H., 1987 Iron oxides and oxyhydroxides Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. II New York Plenum Publishing Company 507582.Google Scholar
Ohta, T. Takeda, H. and Takéuchi, Y., 1982 Mica polytypism: similarities in the crystal structures of coexisting 1M and 2M1 oxybiotite American Mineralogist 67 298310.Google Scholar
Pajcini, V. and Dhamelincourt, P., 1994 Raman study of OH-stretching vibrations in kaolinite at low temperatures Applied Spectroscopy 48 638641 10.1366/0003702944924844.CrossRefGoogle Scholar
Radoslovich, E.W., 1962 The cell dimensions and symmetry of layer-lattice silicates. II. Regression relations American Mineralogist 47 617636.Google Scholar
Radoslovich, E.W. and Norrish, K., 1962 The cell dimensions and symmetry of layer-lattice silicates. I. Some structural considerations American Mineralogist 47 599616.Google Scholar
Rancourt, D.G., 1989 Accurate site populations from Mössbauer spectroscopy Nuclear Instruments and Methods in Physics Research B (NIMB) 44 199210 10.1016/0168-583X(89)90428-X.CrossRefGoogle Scholar
Rancourt, D.G., 1994 Mössbauer spectroscopy of minerals. I. Inadequacy of Lorentzian-line doublets in fitting spectra arising from quadrupole splitting distributions Physics and Chemistry of Minerals 21 244249 10.1007/BF00202138.CrossRefGoogle Scholar
Rancourt, D.G., 1994 Mössbauer spectroscopy of minerals. II. Problem of resolving cis and trans octahedral Fe2+ sites Physics and Chemistry of Minerals 21 250257 10.1007/BF00202139.CrossRefGoogle Scholar
Rancourt, D.G., 1996 Analytic methods for Mössbauer spectral analysis of complex materials Mössbauer Spectroscopy Applied to Magnetism and Materials Science New York Plenum Press 105124 10.1007/978-1-4899-1763-8_5.CrossRefGoogle Scholar
Rancourt, D.G., 1998 Mössbauer spectroscopy in clay science Hyperfine Interactions 117 338 10.1023/A:1012651628508.CrossRefGoogle Scholar
Rancourt, D.G. and Ping, J.Y., 1991 Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy Nuclear Instruments and Methods in Physics Research B (NIMB) 58 8597 10.1016/0168-583X(91)95681-3.CrossRefGoogle Scholar
Rancourt, D.G. Tume, P. and Lalonde, A.E., 1993 Kinetics of the (Fe2+ + OH)mica = (Fe3+ + O2−)mica + H oxidation reaction in bulk single-crystal biotite studied by Mössbauer spectroscopy Physics and Chemistry of Minerals 20 276284 10.1007/BF00208141.CrossRefGoogle Scholar
Rancourt, D.G. McDonald, A.M. Lalonde, A.E. and Ping, J.Y., 1993 Mössbauer absorber thicknesses for accurate site populations in Fe-bearing minerals American Mineralogist 78 17.Google Scholar
Rancourt, D.G. Christie, I.A.D. Royer, M. Kodama, H. Robert, J.-L. Lalonde, A.E. and Murad, E., 1994 Determination of accurate [4]Fe3+, [6]Fe3+, and [6]Fe2+ site populations in synthetic annite by Mössbauer spectroscopy American Mineralogist 79 5162.Google Scholar
Rancourt, D.G. Christie, I.A.D. Lamarche, G. Swainson, I. and Flandrois, S., 1994 Magnetism of synthetic and natural annite mica: ground state and nature of excitations in an exchange-wise two-dimensional easy-plane ferromagnet with disorder Journal of Magnetism and Magnetic Materials 138 3144 10.1016/0304-8853(94)90396-4.CrossRefGoogle Scholar
Rancourt, D.G. Ping, J.Y. and Berman, R.G., 1994 Mössbauer spectroscopy of minerals. III. Octahedral-site Fe2+ quadrupole splitting distributions in the phlogopite-annite series Physics and Chemistry of Minerals 21 258267 10.1007/BF00202140.CrossRefGoogle Scholar
Rancourt, D.G. Ping, J.Y. Boukili, B. and Robert, J.-L., 1996 Octahedral-site Fe2+ quadrupole splitting distributions from Mössbauer spectroscopy along the (OH, F)-annite join Physics and Chemistry of Minerals 23 6371 10.1007/BF00202995.CrossRefGoogle Scholar
Rebbert, C.R. Partin, E. and Hewitt, D.A., 1995 Synthetic biotite oxidation under hydrothermal conditions American Mineralogist 80 345354 10.2138/am-1995-3-416.CrossRefGoogle Scholar
Redhammer, G.J., 1998 Characterisation of synthetic trioctahedral micas by Mössbauer spectroscopy Hyperfine Interactions 117 85115 10.1023/A:1012639225782.CrossRefGoogle Scholar
Redhammer, G.J. Beran, A. Schneider, J. Amthauer, G. and Lottermoser, W., 2000 Spectroscopic and structural properties of synthetic micas on the annite-siderophyllite binary: synthesis, crystal structure refinement, Mössbauer, and infrared spectroscopy American Mineralogist 85 449465 10.2138/am-2000-0406.CrossRefGoogle Scholar
Redhammer, G.J. Beran, A. Dachs, E. and Amthauer, G., 1993 A Mössbauer study and X-ray diffraction study of annites synthesized at different oxygen fugacities and crystal chemical implications Physics and Chemistry of Minerals 20 382394 10.1007/BF00203107.CrossRefGoogle Scholar
Rimsaite, J., 1970 Structural formulae of oxidized and hydroxyl-deficient micas and decomposition of the hydroxyl group Contributions to Mineralogy and Petrology 25 225240 10.1007/BF00371132.CrossRefGoogle Scholar
Robert, J.-L. Bény, J.-M. Bény, C. and Volfinger, M., 1989 Characterization of lepidolites by Raman and infrared spectrometries. I. Relationships between OH-stretching wavenumbers and compositions Canadian Mineralogist 27 225235.Google Scholar
Robert, M., 1971 Étude experimentale de l’évolution des micas (biotites) Annales Agronomie 22 4393.Google Scholar
Ross, G.J. and Rich, C.I., 1974 Effect of oxidation and reduction on potassium exchange of biotite Clays and Clay Minerals 22 355360 10.1346/CCMN.1974.0220406.CrossRefGoogle Scholar
Royer, M., 1991 Site-specific Fe-57 Mössbauer recoilless fractions in true trioctahedral micas Ottawa, Canada University of Ottawa.Google Scholar
Sanz, J. Gonzales-Carreno, T. and Gancedo, R., 1983 On dehydroxylation mechanism of a biotite in vacuo and oxygen Physics and Chemistry of Minerals 9 1418 10.1007/BF00309464.CrossRefGoogle Scholar
Schnatter, K.H. Doremus, R.H. and Lanford, W.A., 1988 Hydrogen analysis of soda-lime silicate glass Journal of Non-crystalline Solids 102 1118 10.1016/0022-3093(88)90106-8.CrossRefGoogle Scholar
Shabani, A.A.T. Rancourt, D.G. and Lalonde, A.E., 1998 Determination of cis and trans Fe2+ populations in 2M1 muscovite by Mössbauer spectroscopy Hyperfine Interactions 117 117129 10.1023/A:1012659830325.CrossRefGoogle Scholar
Skogby, H., 1994 OH incorporation in synthetic clinopyroxene American Mineralogist 79 240249.Google Scholar
Skogby, H. and Rossman, G.R., 1989 OH− in pyroxene: an experimental study of incorporation mechanism and stability American Mineralogist 74 10591069.Google Scholar
Smith, G. Howes, B. and Hasan, Z., 1980 Mössbauer and optical spectra of biotite: a case for Fe2+-Fe3+ interactions Physica status solidi (A) 57 K187 K192 10.1002/pssa.2210570264.CrossRefGoogle Scholar
Speer, J.A. and Bailey, S.W., 1984 Micas in Igneous Rocks Micas Washington, D.C. Mineralogical Society of America 299356 10.1515/9781501508820-013 Reviews in Mineralogy, 13 .CrossRefGoogle Scholar
Takeda, H. and Ross, M., 1975 Mica polytypism: dissimilarities in the crystal structures of coexisting 1M and 2M1 biotite American Mineralogist 60 10301040.Google Scholar
Tricker, M.J., Winterbottom, A.P. and Freeman, A.G. (1976) Iron-57 conversion-electron Mössbauer spectroscopic study of the initial stages of the oxidation of biotite. Journal of Chemical Society—Dalton Transactions, 12891292.CrossRefGoogle Scholar
Vedder, W. and Wilkins, R.W.T., 1969 Dehydroxylation and rehydroxylation oxidation and reduction of micas American Mineralogist 54 482509.Google Scholar
Veith, J.A. and Jackson, M.L., 1974 Iron oxidation and reduction effects on structured hydroxyl and layer charge in aqueous suspensions of micaceous vermiculites Clays and Clay Minerals 22 345353 10.1346/CCMN.1974.0220405.CrossRefGoogle Scholar
Virgo, D. and Popp, R.K., 2000 Hydrogen deficiency in mantle-derived phlogopites American Mineralogist 85 753759 10.2138/am-2000-5-614.CrossRefGoogle Scholar
Volfinger, M. Robert, J.-L. Vielzeuf, D. and Neiva, A.M.R., 1985 Structural control of the chlorine content of OH-bearing silicates (micas and amphiboles) Geochimica et Cosmochimica Acta 49 3748 10.1016/0016-7037(85)90189-9.CrossRefGoogle Scholar
Wada, N. and Kamitakahara, W.A., 1991 Inelastic neutron- and Raman-scattering studies of muscovite and vermiculite layered silicates Physical Review B 43 23912397 10.1103/PhysRevB.43.2391.CrossRefGoogle ScholarPubMed
Weiss, Z. Reider, M. and Chmielova, M., 1992 Information of coordination polyhedra and their sheets in phyllosilicates European Journal of Mineralogy 4 665682 10.1127/ejm/4/4/0665.CrossRefGoogle Scholar
Wilson, M.J., 1970 A study of weathering in a soil derived from a biotite-hornblende rock I. Weathering of biotite Clay Minerals 8 291303 10.1180/claymin.1970.008.3.07.CrossRefGoogle Scholar
Wones, D.R., 1963 Physical properties of synthetic biotites on the join phlogopite-annite American Mineralogist 48 13001321.Google Scholar
Ziegler, J.F. and Biersack, J.P. (2000) The stopping and range of ions in matter. SRIM computer software, version SRIM-2000.39.Google Scholar
Ziegler, J.F. Biersack, J.P. and Littmark, U., 1985 The Stopping and Range of Ions in Solids New York Pergamon Press 321 pp.Google Scholar