Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T16:32:28.769Z Has data issue: false hasContentIssue false

Modifying layered double hydroxide nanoparticles for tumor imaging and therapy

Published online by Cambridge University Press:  01 January 2024

Li Li
Affiliation:
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
Bei Li
Affiliation:
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
Wenyi Gu
Affiliation:
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
Zhi Ping Xu*
Affiliation:
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia

Abstract

Tumor theranostics (a portmanteau of therapeutics and diagnostics) is now achieved in various ways with complex nanoparticle systems. Layered double hydroxide (LDH) nanoparticles are effective at drug/gene delivery and as imaging agents in potential tumor theranostics. This mini-review paper summarizes recent progress in developing LDH nanoparticles as a pH-sensitive magnetic resonance imaging (MRI) contrast agent, as a positron emission tomography (PET) imaging agent, and as a co-delivery platform for two therapeutic agents for tumor diagnosis and therapy. These results have indicated clearly the potential application of LDH nanoparticles for simultaneous diagnosis and treatment of cancers.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caravan, P., Farrar, C. T., Frullano, L., & Uppal, R..(2009). Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media & Molecular Imaging, 4, 89100.CrossRefGoogle ScholarPubMed
Chen, C., Yee, L. K., Gong, H., Zhang, Y., & Xu, R. (2013). A facile synthesis of strong near infrared fluorescent layered double hydroxide nanovehicles with an anticancer drug for tumor optical imaging and therapy. Nanoscale, 5, 43144320.CrossRefGoogle ScholarPubMed
Chen, J. (2011). Multiple signal pathways in obesity-associated cancer. Obesity Reviews, 12, 10631070.CrossRefGoogle ScholarPubMed
Chen, J. Z., Shao, R. F., Li, L., Xu, Z. P., & Gu, W. Y. (2014). Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways. International Journal of Nanomedecine, 9, 34033411.Google ScholarPubMed
Chen, M., Cooper, H. M., Zhou, J. Z., Bartlett, P. F., & Xu, Z.P. (2013). Reduction in the size of layered double hydroxide nanoparticles enhances the efficiency of siRNA delivery. Journal of Colloid And Interface Science, 390, 275281.CrossRefGoogle ScholarPubMed
Choi, G., Piao, H., Alothman, Z. A., Vinu, A., Yun, C. O., & Choy, J. H. (2016). Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model. International Journal of Nanomedicine, 11, 337348.CrossRefGoogle Scholar
Choi, S. J., Oh, J. M., & Choy, J. H. (2008). Anticancer drug-layered hydroxide nanohybrids as potent cancer chemotherapy agents. Journal of Physics and Chemistry of Solids, 69, 15281532.CrossRefGoogle Scholar
Choi, S. J., & Choy, J. H. (2011). Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity. Nanomedicine, 6, 803814.CrossRefGoogle ScholarPubMed
Chow, L. W. C., & Loo, W. T. Y. (2003). The differential effects of cyclophosphamide, epirubicin and 5-fluorouracil on apoptotic marker (CPP-32), proapoptotic protein (p21WAF-1) and antiapoptotic protein (bcl-2) in breast cancer cells. Breast Cancer Research Treatment, 80, 239244.CrossRefGoogle Scholar
Choy, J. H., Jung, J. S., Oh, J. M., Park, M., Jeong, J., Kang, Y. K., & Han, O. J. (2004). Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials, 25, 30593064.CrossRefGoogle ScholarPubMed
Chumakova, O. V., Liopo, A. V., Mark, E. B., & Esenaliev, R. O. (2006). Effect of 5-fluorouracil, optison and ultrasound on MCF-7 cell viability. Ultrasound in Medicine and Biology, 32, 751758.CrossRefGoogle ScholarPubMed
Copur, S., Aiba, K., Drake, J. C., Allegra, C. J., & Chu, E. (1995). Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil. Biochemical Pharmacology, 49, 14191426.CrossRefGoogle ScholarPubMed
Desigaux, L., Richard, P., Pitard, B., Belkacem, M. B., Cellier, J., Leroux, F., Taviot-Guého, C., Léone, P., & Cario, L. (2006). Selfassembly and characterization of layered double hydroxide/DNA hybrids. Nano Letters, 6, 199204.CrossRefGoogle ScholarPubMed
Donahue, K. M., Burstein, D., Manning, W. J., & Gray, M. L. (1994). Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magnetic Resonance in Medicine, 32, 6676.CrossRefGoogle ScholarPubMed
Gu, Z., Zuo, H. L., Li, L., Wu, A. H., & Xu, Z. P. (2015). Pre-coating layered double hydroxide nanoparticles with albumin to improve colloidal stability and cellular uptake. Journal of Materials Chemistry B, 3, 33313339.CrossRefGoogle ScholarPubMed
Heffern, M. C., Matosziuk, L. M., & Meade, M. J. (2014). Lanthanide probes for bioresponsive imaging. Chemical Reviews, 114, 44964539.CrossRefGoogle ScholarPubMed
Ito, A., Fujioka, M., Yoshida, T., Wakamatsu, K., Ito, S., Yamashita, T., Jimbow, K., & Honda, H. (2007). 4-S-cysteaminylphenol-loaded magnetite cationic liposomes for combination therapy of hyperthermia with chemotherapy against malignant melanoma. Cancer Science, 98, 424430.CrossRefGoogle ScholarPubMed
Johnston, P. G., Lenz, H. J., Leichman, C. G., Danenberg, K. D., Allegra, C. J., Danenberg, P. V., & Leichman, L. (1995). Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Research, 55, 14071412.Google ScholarPubMed
Khan, A. I., Lei, L., Norquist, A. J., & Hare, D. (2001). Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide. Chemical Communications, 0, 23422343.CrossRefGoogle Scholar
Lee, J. H., Jung, D. Y., Kim, E., & Ahn, T. K. (2014). Fluorescein dye intercalated layered double hydroxides for chemically stabilized photoluminescent indicators on inorganic surfaces. Dalton Transcations, 43, 85438548.CrossRefGoogle ScholarPubMed
Li, B., Gu, Z., Kurniawan, N., Chen, W. Y., & Xu, Z. P. (2017). Manganese-based layered double hydroxide nanoparticle as a T1-MRI contrast agent with ultrasensitive pH response and high relaxivity. Advanced Materials, 29, 1700373.CrossRefGoogle Scholar
Li, D., Zhang, Y. T., Yu, M., Guo, J., Chaudhary, D., & Wang, C. C. (2013). Cancer therapy and fluorescence imaging using the active release of doxorubicin from MSPs/Ni-LDH folate targeting nanoparticles. Biomaterials, 34, 79137922.CrossRefGoogle ScholarPubMed
Li, L., Gu, W., Chen, J., Chen, W., & Xu, Z. P. (2014). Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles. Biomaterials, 35, 33313339.CrossRefGoogle ScholarPubMed
Li, L., Gu, W., Liu, J., & Xu, Z. P. (2015). Amine-functionalized SiO2 nanodot-coated layered double hydroxide nanocomposites for enhanced gene delivery. Nano Research, 8, 682694.CrossRefGoogle Scholar
Li, X. S., Ke, M. R., Huang, W., Ye, C. H., & Huang, J. D. (2015). A pH-responsive layered double hydroxide (LDH)–phthalocyanine nanohybrid for efficient photodynamic therapy. Chemistry - A European Journal, 21, 33103317.CrossRefGoogle ScholarPubMed
Manara, M. C., Nicoletti, G., Zambelli, D., Ventura, S., Guerzoni, C., Landuzzi, L., Lollini, P. L., Maira, S. M., García-Echeverría, C., Mercuri, M., Picci, P., & Scotlandi, K. (2010). NVP-BEZ235 as a new therapeutic option for sarcomas. Clinical Cancer Research, 16, 530540.CrossRefGoogle ScholarPubMed
Mei, X., Ma, J., Bai, X., Zhang, X., Zhang, S., Liang, R., Wei, M., Evans, D. G., & Duan, X. (2018a). A bottom-up synthesis of rareearth-hydrotalcite monolayer nanosheets toward multimode imaging and synergetic therapy. Chemical Science, 9, 56305639.CrossRefGoogle ScholarPubMed
Mei, X., Wang, W., Yan, L., Hu, T., Liang, R., Yan, D., Wei, M., Evans, D. G., & Duan, X. (2018b). Hydrotalcite monolayer toward high performance synergistic dual-modal imaging and cancer therapy. Biomaterials, 165, 1424.CrossRefGoogle ScholarPubMed
Park, A.-Y., Kwon, H., Woo, A. J., & Kim, S. J. (2005). Layered double hydroxide surface modified with (3-aminopropyl)-triethoxysilane by covalent bonding. Advanced Materials, 17, 106109.CrossRefGoogle Scholar
Shi, S. X., Fliss, B., Gu, Z., Zhu, Y., Hong, H., Valdovinos, H. F., Hernandez, R., Goel, S., Luo, H. M., Chen, F., Barnhart, T. E., Nickles, R. J., Xu, Z. P., & Cai, W. B. (2015). Chelator-free labeling of layered double hydroxide nanoparticles for in vivo PET imaging. Scientific Reports, 5(16930), 110.CrossRefGoogle ScholarPubMed
Wang, L., Xing, H. Y., Zhang, S. J., Ren, Q. G., Pan, L. M., Zhang, K., Bu, W. B., Zheng, X. P., Zhou, L. P., Peng, W. J., Hua, Y. Q., & Shi, J. L. (2013). A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery. Biomaterials, 34, 33903401.CrossRefGoogle ScholarPubMed
Wang, Q., & O'Hare, D. (2012). Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 112, 41244155.CrossRefGoogle ScholarPubMed
Wong, Y., Cooper, H. M., Zhang, K., Chen, M., Bartlett, P., & Xu, Z. P. (2012). Efficiency of layered double hydroxide nanoparticlemediated delivery of siRNA is determined by nucleotide sequence. Journal of Colloid And Interface Science, 369, 453459.CrossRefGoogle ScholarPubMed
Wu, P., & Hu, Y. Z. (2010). PI3K/Akt/mTOR pathway inhibitors in cancer: a perspective on clinical progress. Current Medicinal Chemistry, 17, 43264341.CrossRefGoogle Scholar
Xu, Z. P., & Lu, G. Q. (2005). Hydrothermal synthesis of layered double hydroxides (LDHs) from mixed MgO and Al2O3: LDH formation mechanism. Chemistry of Materials, 17, 10551062.CrossRefGoogle Scholar
Xu, Z. P., Stevenson, G. S., Lu, C. Q., & Lu, G. Q. (2006a). Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions. The Journal of Physical Chemistry B, 110, 1692316929.CrossRefGoogle ScholarPubMed
Xu, Z. P., Stevenson, G. S., Lu, C. Q., Lu, G. Q., Bartlett, P. F., & Gray, P. P. (2006b). Stable suspension of layered double hydroxide nanoparticles in aqueous solution. Journal of the American Chemical Society, 128, 3637.CrossRefGoogle Scholar
Xu, Z. P., Jin, Y. G., Liu, S. M., Hao, Z. P., & Lu, G. Q. (2008a). Surface charging of layered double hydroxides during dynamic interactions of anions at the interfaces. Journal of Colloid And Interface Science, 326, 522529.CrossRefGoogle ScholarPubMed
Xu, Z. P., Niebert, M., Porazik, K., Walker, T. L., Cooper, H. M., Middelberg, A. P. J., Gray, P. P., Bartlett, P. F., & Lu, G. Q. (2008b). Subcellular compartment targeting of layered double hydroxide nanoparticles. Journal of Controlled Release, 130, 8694.CrossRefGoogle ScholarPubMed
Zuo, H. L., Chen, W., Li, B., Xu, K., Cooper, H., Gu, Z., & Xu, Z. P. (2017). MnAl- layered double hydroxide nanoparticles as a dual-functional platform for magnetic resonance imaging and siRNA delivery. Chemistry – A European Journal, 23, 1429914306.CrossRefGoogle ScholarPubMed