Hostname: page-component-76dd75c94c-lntk7 Total loading time: 0 Render date: 2024-04-30T07:52:08.568Z Has data issue: false hasContentIssue false

Photo-assisted Catalytic Removal of NOx Over La1–xPrxCoO3/Palygorskite Nanocomposites: Role of Pr Doping

Published online by Cambridge University Press:  01 January 2024

Kenian Wei
Affiliation:
Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
Xiangyu Yan
Affiliation:
Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
Shixiang Zuo
Affiliation:
Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
Wei Zhu
Affiliation:
Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
Fengqin Wu
Affiliation:
Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
Xiazhang Li
Affiliation:
Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
Chao Yao*
Affiliation:
Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
Xiaoheng Liu
Affiliation:
Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China
*
*E-mail address of corresponding author: yaochao420@163.com

Abstract

Photo-assisted selective catalytic reduction (photo-SCR) has been considered as a promising strategy for NOx removal in recent decades. The purpose of the present work was to test the effectiveness of La1–xPrxCoO3, supported on the surface of natural palygorskite (Pal) by a facile sol-gel method, as a photo-SCR for the removal of NOx from wastewaters. The structure, acidity, and the redox property of the prepared La1–xPrxCoO3/Pal nanocomposite were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS), and X-ray photoelectron spectroscopy (XPS). Density functional theory (DFT) calculations were employed to determine the valence bands. The La1–xPrxCoO3/Pal catalysts were then tested for SCR removal of NOx with the assistance of photo-irradiation. The photo-SCR results revealed that the NOx conversion and the N2-selectivity were greatly improved by this method and reached >95% when carried out at the relatively low temperature of 200°C and with the Pr doping at x = 0.5. The improvements were attributed to the co-precipitation of a PrCoO3 phase as in a solid solution forming a coherent heterojunction of PrCoO3/La0.5Pr0.5CoO3 on the Pal surface.

Type
Article
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was originally presented during the World Forum on Industrial Minerals, held in Qing Yang, China, October 2018

References

Ayodele, B. V. Khan, M. R. Cheng, C. K., Greenhouse gases mitigation by CO2 reforming of methane to hydrogen-rich syngas using praseodymium oxide supported cobalt catalyst Clean Technologies and Environmental Policy 2017 19 795807 10.1007/s10098-016-1267-z.CrossRefGoogle Scholar
Bhaskar, A. Huang, M. S. Liu, C. J., Effects of Fe doping on the thermal hysteresis of the La0.5Ca0.5MnO3 system RSC Advances 2017 7 11543–11154 10.1039/C6RA27974K.CrossRefGoogle Scholar
Cai, Yuxiang Zhu, Xinbo Hu, Wenshuo Zheng, Chenghang Yang, Yang Chen, Menghan Gao, Xiang, Plasma-catalytic decomposition of ethyl acetate over LaMO3 (M = Mn, Fe, and Co) perovskite catalysts Journal of Industrial and Engineering Chemistry 2019 70 447452 10.1016/j.jiec.2018.11.007.CrossRefGoogle Scholar
Chen, M. Wang, Y. Yang, Z. Liang, T. Liu, S. Zhou, Z. Li, X., Effect of Mg-modified mesoporous Ni/Attapulgite catalysts on catalytic performance and resistance to carbon deposition for ethanol steam reforming Fuel 2018 220 3246 10.1016/j.fuel.2018.02.013.CrossRefGoogle Scholar
Chen, L. Zhou, C. H. Fiore, S. Tong, D. S. Zhang, H. Li, C. S. Ji, S. F. Yu, W. H., Functional magnetic nanoparticle/clay mineral nanocomposites: preparation, magnetism and versatile applications Applied Clay Science 2016 127-128 143163 10.1016/j.clay.2016.04.009.CrossRefGoogle Scholar
Geng, Y. Chen, X. Yang, S. Liu, F. Shan, W., Promotional effects of Ti on a CeO2-MoO3 catalyst for the selective catalytic reduction of NOx with NH3 ACS Applied Materials & Interfaces 2017 9 1695116958 10.1021/acsami.6b05380.CrossRefGoogle Scholar
Humayun, M. Sun, N. Raziq, F. Zhang, X. Yan, R. Li, Z. Qu, Y. Jing, L., Synthesis of ZnO/Bi-doped porous LaFeO3 nanocomposites as highly efficient nano-photocatalysts dependent on the enhanced utilization of visible-light-excited electrons Applied Catalysis B: Environmental 2018 231 2333 10.1016/j.apcatb.2018.02.060.CrossRefGoogle Scholar
Kadir, S. Eren, M. Irkec, T. Erkoyun, H. Kulah, T. Onalgil, N. Huggett, J., Lacustrine sediments of the Lower Pliocene Sakarya and Porsuk formations in the Sivrihisar and Yunusemre-Bicer regions (Eskisehir), Turkey Clays and Clay Minerals 2017 65 310328 10.1346/CCMN.2017.064067.CrossRefGoogle Scholar
Li, X. Shi, H. Wang, T. Zhang, Y. Zuo, S. Luo, S. Yao, C., Photocatalytic removal of NO by Z-scheme mineral based heterojunction intermediated by carbon quantum dots Applied Surface Science 2018 456 835844 10.1016/j.apsusc.2018.06.133.CrossRefGoogle Scholar
Li, X. Yan, X. Zuo, S. Lu, X. Luo, S. Li, Z. Yao, C. Ni, C., Construction of LaFe1-xMnxO3/attapulgite nanocomposite for photo-SCR of NOx at low temperature Chemical Engineering Journal 2017 320 211221 10.1016/j.cej.2017.03.035.CrossRefGoogle Scholar
Lin, S. Zhou, T. Yin, S., Properties of thermally treated granular montmorillonite-palygorskite adsorbent (GMPA) and use to remove Pb2+ and Cu2+ from aqueous solutions Clays and Clay Minerals 2017 65 184192 10.1346/CCMN.2017.064058.CrossRefGoogle Scholar
Liu, Z. Gu, C. Bian, Y. Jiang, X. Sun, Y. Fei, Z. Dai, J., Enhanced debromination of decabrominated diphenyl ether in aqueous solution by attapulgite supported Fe/Ni bimetallic nanoparticles: kinetics and pathways Materials Research Express 2017 4 085009 10.1088/2053-1591/aa80ff.CrossRefGoogle Scholar
Xiao, S. Pan, D. Liang, R. Dai, W. Zhang, Q. Zhang, G. Su, C. Li, H. Chen, W., Bimetal MOF derived mesocrystal ZnCo2O4 on rGO with High performance in visible-light photocatalytic NO oxidization Applied Catalysis B: Environmental 2018 236 304313 10.1016/j.apcatb.2018.05.033.CrossRefGoogle Scholar
Poggio-Fraccari, E. Baronetti, G. Marino, F., Pr3+ surface fraction in CePr mixed oxides determined by XPS analysis Journal of Electron Spectroscopy and Related Phenomena 2018 222 14 10.1016/j.elspec.2017.11.003.CrossRefGoogle Scholar
Takase, M. Pappoe, A. N. Afrifa, E. A. Miyittah, M., High performance heterogeneous catalyst for biodiesel production from non-edible oil Renewable Energy Focus 2018 25 2430 10.1016/j.ref.2018.03.002.CrossRefGoogle Scholar
Wang, T. Chen, Y. Ma, J. Jin, Z. Chai, M. Xiao, X. Zhang, L. Zhang, Y., A polyethyleneimine-modified attapulgite as a novel solid support in matrix solid-phase dispersion for the extraction of cadmium traces in seafood products Talanta 2018 180 254259 10.1016/j.talanta.2017.12.059.CrossRefGoogle ScholarPubMed
Wang, X. Zuo, J. Luo, Y. Jiang, L., New route to CeO2/LaCoO3 with high oxygen mobility for total benzene oxidation Applied Surface Science 2017 396 95101 10.1016/j.apsusc.2016.11.033.CrossRefGoogle Scholar
Yan, S. Pan, Y. Wang, L. Zhang, X. Liu, J. Yang, J., Effects of calcination temperature on the microstructure and adsorption properties of attapulgite microspheres Materials Science Forum 2018 913 907916 10.4028/www.scientific.net/MSF.913.907.CrossRefGoogle Scholar
Yu, J. C. Nguyen, V. Lasek, J. Wu, J. C., Titania nanosheet photocatalysts with dominantly exposed (001) reactive facets for photocatalytic NOx abatement Applied Catalysis B: Environmental 2017 219 391400 10.1016/j.apcatb.2017.07.077.CrossRefGoogle Scholar
Zhou, C. H. Keeling, J., Fundamental and applied research on clay minerals: From climate and environment to nanotechnology Applied Clay Science 2013 74 39 10.1016/j.clay.2013.02.013.CrossRefGoogle Scholar
Zhou, C. H. Zhao, L. Z. Wang, A. Q. Chen, T. H. He, H. P., Current fundamental and applied research into clay minerals in China Applied Clay Science 2016 119 37 10.1016/j.clay.2015.07.043.CrossRefGoogle Scholar
Zhu, T. T. Zhou, C. H. Kabwe, F. B. Wu, Q. Q. Li, C. S. Zhang, J. R., Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites Applied Clay Science 2019 169 4866 10.1016/j.clay.2018.12.006.CrossRefGoogle Scholar