Hostname: page-component-76dd75c94c-qmf6w Total loading time: 0 Render date: 2024-04-30T09:32:42.679Z Has data issue: false hasContentIssue false

Porewater Content, Pore Structure and Water Mobility in Clays and Shales from NMR Methods

Published online by Cambridge University Press:  01 January 2024

M. Fleury*
Affiliation:
IFP Energies Nouvelles, Rueil-Malmaison, France
T. Gimmi
Affiliation:
University of Bern, Bern, Switzerland Paul Scherrer Institut, Villigen, Switzerland
M. Mazurek
Affiliation:
University of Bern, Bern, Switzerland

Abstract

Sub-surface clay samples are difficult to characterize using conventional methods so non-invasive Nuclear Magnetic Resonance (NMR) techniques were used to evaluate in a preserved state the pore structure, porosity, water mobility, and affinity of various clay systems. Within the CLAYWAT project launched by the NEA Clay Club, some of the most advanced NMR techniques were applied to samples from 11 clay-rich sedimentary formations (Boom Clay, Yper Clay (both Belgium); Callovo-Oxfordian shale, Upper Toarcian (both France); Opalinus Clay from two sites (Switzerland); Queenston Fm., Georgian Bay Fm., Blue Mountain Fm. (all Canada); Boda Clay (Hungary); and Wakkanai Fm. and Koetoi Fm. (Japan)). The degree of induration within this suite of samples varies substantially, resulting in a wide porosity range of 0.02–0.6. The key finding is the determination of pore-size distribution by NMR cryoporometry in the range of 2 nm–1 μm with the native fluid present in the pore space for most samples. The water volume in pore sizes of <2 nm could also be measured, thus providing a full description of the porosity system. A specific preparation by sample milling was applied to the preserved original cores minimizing disturbances to the samples in terms of water loss. The water content measured by NMR relaxation was comparable to values obtained by drying at 105°C. In general, the narrow T2 distributions indicate that water was diffusing throughout the pore network during the magnetization lifetime, implying that T2 distributions cannot be considered as proxies for the pore-size distributions. For the set of samples considered, the T1/T2 varied between 1.7 and 4.6, implying variable surface affinity. Finally, for most samples, a pore-shape factor of ~2.4, intermediate between a sheet (1) and a cylinder (4), was deduced.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernin, D., & Topgaard, D. (2013). NMR diffusion and relaxation correlation methods: New insights in heterogeneous materials. Current Opinion in Colloid & Interface Science, 18(3), 166172. https://doi.org/10.1016/j.cocis.2013.03.007CrossRefGoogle Scholar
Bowers, G. M., Schaef, H. T., Loring, J. S., Hoyt, D. W., Burton, S. D., Walter, E. D., & Kirkpatrick, R. J. (2017). Role of Cations in CO2 Adsorption, Dynamics, and Hydration in Smectite Clays under in Situ Supercritical CO2 Conditions. The Journal of Physical Chemistry C, 121(1), 577592. https://doi.org/10.1021/acs.jpcc.6b11542CrossRefGoogle Scholar
Burba, C. M., & Janzen, J. (2015). Confinement effects on the phase transition temperature of aqueous NaCl solutions: The extended Gibbs–Thomson equation. Thermochimica Acta, 615, 8187. https://doi.org/10.1016/j.tca.2015.07.013CrossRefGoogle Scholar
D'Agostino, C., Mitchell, J., Mantle, M. D., & Gladden, L. F. (2014). Interpretation of NMR relaxation as a tool for characterising the adsorption strength of liquids inside porous materials. Chemistry (Weinheim an Der Bergstrasse, Germany), 20(40), 1300913015. https://doi.org/10.1002/chem.201403139Google ScholarPubMed
Desbois, G., Urai, J. L., & Kukla, P. A. (2009). Morphology of the pore space in claystones – evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. eEarth Discussions, 4(1), 119.Google Scholar
Dunn, K.-J., Bergman, D. J., & Latorraca, G. A. (2002). Nuclear magnetic resonance: Petrophysical and logging applications (1st ed.). Seismic exploration: v. 32. Pergamon, London.Google Scholar
Faux, D., Kogon, R., Bortolotti, V., & McDonald, P. (2019). Advances in the Interpretation of Frequency-Dependent Nuclear Magnetic Resonance Measurements from Porous Material. Molecules (Basel, Switzerland), 24(20). https://doi.org/10.3390/molecules24203688CrossRefGoogle ScholarPubMed
Fleury, M., & Canet, D. (2014). Water Orientation in Smectites Using NMR Nutation Experiments. The Journal of Physical Chemistry C, 118(9), 47334740. https://doi.org/10.1021/jp4118503CrossRefGoogle Scholar
Fleury, M., & Romero-Sarmiento, M. (2016). Characterization of shales using T1–T2 NMR maps. Journal of Petroleum Science and Engineering, 137, 5562. https://doi.org/10.1016/j.petrol.2015.11.006CrossRefGoogle Scholar
Fleury, M., & Soualem, J. (2009). Quantitative analysis of diffusional pore coupling from T2-store-T2 NMR experiments. Journal of Colloid and Interface Science, 336(1), 250259. https://doi.org/10.1016/j.jcis.2009.03.051CrossRefGoogle ScholarPubMed
Fleury, M., Kohler, E., Norrant, F., Gautier, S., M'Hamdi, J., & Barré, L. (2013). Characterization and Quantification of Water in Smectites with Low-Field NMR. Journal of Physical Chemistry C, 117, 45514560 http://pubs.acs.org/doi/full/10.1021/jp311006qCrossRefGoogle Scholar
Fleury, M., Chevalier, T., Jorand, R., Jolivet, I., & Nicot, B. (2021). Oil-water pore occupancy in the Vaca Muerta source-rocks by NMR cryoporometry. Microporous and Mesoporous Materials, 311, 110680. https://doi.org/10.1016/j.micromeso.2020.110680CrossRefGoogle Scholar
Gaus, I., Azaroual, M., & Czernichowski-Lauriol, I. (2005). Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chemical Geology, 217(3-4), 319337. https://doi.org/10.1016/j.chemgeo.2004.12.016CrossRefGoogle Scholar
Godefroy, S., Korb, J.-P., Fleury, M., & Bryant, R. (2001). Surface nuclear magnetic relaxation and dynamics of water and oil in macroporous media. Physical Review E, 64(2), 113. https://doi.org/10.1103/PhysRevE.64.021605CrossRefGoogle ScholarPubMed
Gopinathan, N., Yang, B., Lowe, J. P., Edler, K. J., & Rigby, S. P. (2014). Nmr cryoporometry characterisation studies of the relation between drug release profile and pore structural evolution of polymeric nanoparticles. International Journal of Pharmaceutics, 469(1), 146158. https://doi.org/10.1016/j.ijpharm.2014.04.018CrossRefGoogle ScholarPubMed
Grekov, D., Montavon, G., Robinet, J.-C., & Grambow, B. (2019). Smectite fraction assessment in complex natural clay rocks from interlayer water content determined by thermogravimetric and thermoporometry analysis. Journal of Colloid and Interface Science, 555, 157165. https://doi.org/10.1016/j.jcis.2019.07.076CrossRefGoogle ScholarPubMed
Hemmen, H., Rolseth, E. G., Fonseca, D. M., Hansen, E. L., Fossum, J. O., & Plivelic, T. S. (2012). X-ray studies of carbon dioxide intercalation in Na-fluorohectorite clay at near-ambient conditions. Langmuir: The ACS Journal of Surfaces and Colloids, 28(3), 16781682. https://doi.org/10.1021/la204164qCrossRefGoogle Scholar
Jantsch, E., Weinberger, C., Tiemann, M., & Koop, T. (2019). Phase Transitions of Ice in Aqueous Salt Solutions within Nanometer-Sized Pores. The Journal of Physical Chemistry C, 123(40), 2456624574. https://doi.org/10.1021/acs.jpcc.9b06527CrossRefGoogle Scholar
Ke, X., Wu, Z., Lin, J., Wang, F., Li, P., Xu, R., Yang, M., Han, L., & Zhang, D. (2020). A rapid analytical method for the specific surface area of amorphous sio2 based on X-Ray diffraction. Journal of Non-Crystalline Solids, 531, 119841. https://doi.org/10.1016/j.jnoncrysol.2019.119841CrossRefGoogle Scholar
Kennell-Morrison, L., Yang, T., & Jensen, M. (2022). Clay Club Catalogue of Characteristics of Argillaceous Rocks. OECD Nuclear Energy Agency.Google Scholar
Khatibi, S., Ostadhassan, M., Xie, Z. H., Gentzis, T., Bubach, B., Gan, Z., & Carvajal-Ortiz, H. (2019). NMR relaxometry a new approach to detect geochemical properties of organic matter in tight shales. Fuel, 235, 167177. https://doi.org/10.1016/j.fuel.2018.07.100CrossRefGoogle Scholar
Kirkpatrick, R. J., Kalinichev, A. G., Bowers, G. M., Yazaydin, A. Ö., Krishnan, M., Saharay, M., & Morrow, C. P. (2015). NMR and computational molecular modeling studies of mineral surfaces and interlayer galleries: A review. American Mineralogist, 100(7), 13411354. https://doi.org/10.2138/am-2015-5141CrossRefGoogle Scholar
Korb, J. (2018). Multiscale nuclear magnetic relaxation dispersion of complex liquids in bulk and confinement. Progress in Nuclear Magnetic Resonance Spectroscopy, 104, 1255. https://doi.org/10.1016/j.pnmrs.2017.11.001CrossRefGoogle ScholarPubMed
Liu, G., Li, Y., & Jonas, J. (1991). Confined geometry effects on reorientational dynamics of molecular liquids in porous silica glasses. The Journal of Chemical Physics, 95(9), 68926901. https://doi.org/10.1063/1.461501CrossRefGoogle Scholar
Matteson, A., Tomanic, J. P., Herron, M. M., Allen, D. F., & Kenyon, W. E. (2013). NMR Relaxation of Clay-Brine Mixtures. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. https://doi.org/10.2118/49008-MSGoogle Scholar
Mazurek, M., Gimmi, T., Dohrmann, R., Emmerich, K., Fleury, M., & Balcom, J. (2022). Interaction of water and minerals in the nanometric pore space of clays and shales: The CLAYWAT project. NEA/OECD report.Google Scholar
McDonald, P. J., Korb, J.-P., Mitchell, J., & Monteilhet, L. (2005). Surface relaxation and chemical exchange in hydrating cement pastes: A two-dimensional NMR relaxation study. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 72(1 Pt 1), 11409. https://doi.org/10.1103/PhysRevE.72.011409Google ScholarPubMed
Mitchell, J., Webber, J., & Strange, J. (2008). Nuclear magnetic resonance cryoporometry. Physics Reports, 461(1), 136. https://doi.org/10.1016/j.physrep.2008.02.001CrossRefGoogle Scholar
Montavon, G., Guo, Z., Tournassat, C., Grambow, B., & Le Botlan, D. (2009). Porosities accessible to HTO and iodide on water-saturated compacted clay materials and relation with the forms of water: A low field proton NMR study. Geochimica et Cosmochimica Acta, 73(24), 72907302. https://doi.org/10.1016/j.gca.2009.09.014CrossRefGoogle Scholar
Monteilhet, L., Korb, J. P., Mitchell, J., & McDonald, P. J. (2006). Observation of exchange of micropore water in cement pastes by two-dimensional T2-T2 nuclear magnetic resonance relaxometry. Physical Review E, 74(6), 61404.10.1103/PhysRevE.74.061404CrossRefGoogle Scholar
Ohkubo, T., Ibaraki, M., Tachi, Y., & Iwadate, Y. (2016). Pore distribution of water-saturated compacted clay using NMR relaxometry and freezing temperature depression; effects of density and salt concentration. Applied Clay Science, 123, 148155. https://doi.org/10.1016/j.clay.2016.01.014CrossRefGoogle Scholar
Pennell, K. D. (2002). 2.5 Specific Surface Area. In Dane, J. H. & Topp, G. Clarke (Eds.), SSSA Book Series. Methods of Soil Analysis (pp. 295315). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.4.c13Google Scholar
Petrov, O. V., & Furó, I. (2009). NMR cryoporometry: Principles, applications and potential. Progress in Nuclear Magnetic Resonance Spectroscopy, 54(2), 97122. https://doi.org/10.1016/j.pnmrs.2008.06.001CrossRefGoogle Scholar
Porion, P., & Michot, L. J. (2007). Structural and dynamical properties of the water molecules confined in dense clay sediments: a study combining 2H NMR spectroscopy and multiscale numerical. Journal of Physical Chemistry C, 54415453.10.1021/jp067907pCrossRefGoogle Scholar
Porion, P., Faugère, A. M., Rollet, A.-L., Dubois, E., Marry, V., Michot, L. J., & Delville, A. (2018). Influence of Strong Confinement on the Structure and Dynamics of Liquids: a Study of the Clay/Water Interface Exploiting 2 H NMR Spectroscopy and Spin-Locking Relaxometry. The Journal of Physical Chemistry C, 122(29), 1683016841. https://doi.org/10.1021/acs.jpcc.8b05089CrossRefGoogle Scholar
Sanz, J. (2006). Nuclear Magnetic Resonance Spectroscopy. In Bergaya, F., Theng, B., & Lagaly, G. (Eds.), Handbook of Clay Science, Vol. 1 (pp. 919938). Elsevier.10.1016/S1572-4352(05)01033-0CrossRefGoogle Scholar
Tian, H., Wei, C., & Yan, R. (2019). Thermal and saline effect on mineral-water interactions in compacted clays: A NMR-based study. Applied Clay Science, 170, 106113. https://doi.org/10.1016/j.clay.2019.01.015CrossRefGoogle Scholar
Washburn, K. E. (2014). Relaxation mechanisms and shales. Concepts in Magnetic Resonance Part a, 43A(3), 5778. https://doi.org/10.1002/cmr.a.21302CrossRefGoogle Scholar
Washburn, K. E., & Callaghan, P. T. (2006). Tracking pore to pore exchange using relaxation exchange spectroscopy. Physical Review Letters, 97(17), 175502. https://doi.org/10.1103/PhysRevLett.97.175502CrossRefGoogle ScholarPubMed
Washburn, K. E., Anderssen, E., Vogt, S. J., Seymour, J. D., Birdwell, J. E., Kirkland, C. M., & Codd, S. L. (2015). Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry. Journal of Magnetic Resonance, 250, 716. https://doi.org/10.1016/j.jmr.2014.10.015CrossRefGoogle ScholarPubMed
Webber, J. B. W. (2010). Studies of nano-structured liquids in confined geometries and at surfaces. Progress in Nuclear Magnetic Resonance Spectroscopy, 56, 7893. https://doi.org/10.1016/j.pnmrs.2009.09.001CrossRefGoogle ScholarPubMed
Webber, J. B. W., Corbett, P., Semple, K. T., Ogbonnaya, U., Teel, W. S., Masiello, C. a., Fisher, Q. J., Valenza, J. J., Song, Y.-Q., & Hu, Q. (2013). An NMR study of porous rock and biochar containing organic material. Microporous and Mesoporous Materials, 178, 9498. https://doi.org/10.1016/j.micromeso.2013.04.004CrossRefGoogle Scholar
Wigger, C., Gimmi, T., Muller, A., & van Loon, L. R. (2018). The influence of small pores on the anion transport properties of natural argillaceous rocks – A pore size distribution investigation of Opalinus Clay and Helvetic Marl. Applied Clay Science, 156, 134143. https://doi.org/10.1016/j.clay.2018.01.032CrossRefGoogle Scholar