Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T20:45:55.447Z Has data issue: false hasContentIssue false

Preparation and Characterization of Magnetic Composites Based on a Natural Zeolite

Published online by Cambridge University Press:  01 January 2024

Marlen Gutiérrez*
Affiliation:
Universidad de Santiago de Chile, Av. B. O’Higgins 3363, 9170022 Santiago, Chile Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago, Chile
Mauricio Escudey
Affiliation:
Universidad de Santiago de Chile, Av. B. O’Higgins 3363, 9170022 Santiago, Chile Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago, Chile
Juan Escrig
Affiliation:
Universidad de Santiago de Chile, Av. B. O’Higgins 3363, 9170022 Santiago, Chile Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago, Chile
Juliano C. Denardin
Affiliation:
Universidad de Santiago de Chile, Av. B. O’Higgins 3363, 9170022 Santiago, Chile Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago, Chile
Dora Altbir
Affiliation:
Universidad de Santiago de Chile, Av. B. O’Higgins 3363, 9170022 Santiago, Chile Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago, Chile
Jose D. Fabris
Affiliation:
Departmento de Quı´mica, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
Luis C. D. Cavalcante
Affiliation:
Departmento de Quı´mica, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
María Teresa García-González
Affiliation:
Instituto de Ciencias Agrarias, Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Científicas, Calle Serrano 115, 28006 Madrid, Spain
*
* E-mail address of corresponding author: mauricio.escudey@usach.cl

Abstract

A magnetic composite was prepared by wet-impregnating a powder of a natural zeolite with a magnetic Fe oxide-containing synthetic material. Both starting materials were first characterized with X-ray diffraction, scanning electron microscopy, Mössbauer spectroscopy, and by isoelectric-point using vibrating-sample magnetometry. The synthetic Fe oxide-containing material was characterized as a mixture of magnetite (Fe3O4) and goethite (α-FeOOH). From the Fe Mössbauer analysis, the relative subspectral area for magnetite corresponds to 93(2)%; the remaining spectrum is assignable to goethite. After the impregnation process, magnetite was still identified in the composite material as a magnetic layer surrounding the zeolite particles; no magnetically ordered goethite could be detected. The Mössbauer pattern for this sample indicates a much more complex structure than for the precursor material, based on Fe oxides, with some more altered magnetite and an intense central doublet of (super)paramagnetic Fe3+, probably due to small Fe (hydr)oxides and/or to a residual contribution of Fe-bearing species from the starting zeolite material. The composite preparation procedure also promoted the change of the characteristic A-type zeolite to mordenite. The resulting magnetic composite presented a magnetic coercivity of as much as 0.140 A m−1, at 77 K. The final composite is now being evaluated as an adsorbent: results to date confirm that this novel magnetic material may have applications in the remediation of contaminated water bodies.

Type
Article
Copyright
Copyright © Clay Minerals Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourlinos, A.B., Zboril, R. and Petridis, D., 2003 A simple route towards magnetically modified zeolites Microporous and Mesoporous Materials 58 155162 10.1016/S1387-1811(02)00613-3.CrossRefGoogle Scholar
Buschow, K.H.J., 2006 Handbook of Magnetic Material 16 450.Google Scholar
Calvo, B., Canoira, L., Morante, F., Martinez-Bedia, J.M., Vinagre, C., Garcia-Gonzalez, J.E., Elsen, J. and Alcantara, R., 2009 Continuous elimination of Pb2+ Cu2+ Zn2+ H+ and NH4 from acidic waters by ionic exchange on natural zeolites Journal of Hazardous Materials 166 619627 10.1016/j.jhazmat.2008.11.087.CrossRefGoogle ScholarPubMed
Chutia, P., Kato, S., Kojima, T. and Satokama, S., 2009 Adsorption of As (V) on surfactant-modified natural zeolites Journal of Hazardous Materials 162 204211 10.1016/j.jhazmat.2008.05.024.CrossRefGoogle Scholar
Escudey, M. and Gil-Llamb´ıas, F., 1985 Effect of cation and anion adsorption on the electrophoretic behavior of MoO3/γ-AlO3 catalysts Journal of Colloid and Interface Science 107 272275 10.1016/0021-9797(85)90173-0.CrossRefGoogle Scholar
Gil-Llamb´ıas, F.J. and Escudey-Castro, A.M., 1982 Use of zero point charge measurements in determining the apparent surface coverage of molybdenum in MoO3/Y-Al2O3 catalysts Journal of the Chemical Society Chemical Communications 9 478479 10.1039/C39820000478.CrossRefGoogle Scholar
Hunter, R.J., 1981 Zeta Potential in Colloid Science: Principles and Applications London Academic Press.Google Scholar
Jackson, M.L., 1969 Soil Chemical Analysis: Advanced Course 3 Wisconsin, USA Madison 894.Google Scholar
Janotka, I., Krajci, L. and Dziva´k, M., 2003 Properties and utilization of zeolite-blended portland cements Clays and Clay Minerals 51 616624 10.1346/CCMN.2003.0510606.CrossRefGoogle Scholar
Moirou, A., Vaxevanidou, A., Christidis, G.E. and Paspaliaris, I., 2000 Ion exchange of zeolite Na-Pc with Pb+, Zn+, and Ni+ ions Clays and Clay Minerals 48 563571 10.1346/CCMN.2000.0480509.CrossRefGoogle Scholar
Motsi, T., Rowson, N.A. and Simmons, M.J.H., 2009 Adsorption of heavy metals from acid mine drainage by natural zeolite InternationalJournal of Mineral Processing 92 4248 10.1016/j.minpro.2009.02.005.CrossRefGoogle Scholar
Myroslav, S., 2009 Solid-liquid-solid extraction of heavy metals (Cr, Cu, Cd, Niand Pb) in aqueous systems of zeolite-sewage sludge Journal of Hazardous Materials 161 13771383 10.1016/j.jhazmat.2008.04.101.Google Scholar
Oliveira, L.C.A., Petkowicz, D.I., Smaniotto, A. and Pergher, S.B.C., 2004 Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water Water Research 38 36993704 10.1016/j.watres.2004.06.008.CrossRefGoogle ScholarPubMed
Parks, G.A. and Gould, R.F., 1969 Aqueous surface chemistry of oxides and complex oxide minerals Equilibrium Concepts in Natural Water Systems Washington D.C. American Chemical Society 121160.Google Scholar
Schmauke, T., Menzel, M. and Roduner, E., 2003 Magnetic properties and oxidation state of iron in bimetallic PtFe/KL zeolite catalysts Journal of Molecular Catalysis A: Chemistry 194 211225 10.1016/S1381-1169(02)00522-8.CrossRefGoogle Scholar
Shan, W., Yu, T., Wang, B., Hu, J.K., Zhan, Y.H., Wang, X.Y. and Tang, Y., 2006 Magnetically separable nanozeolites: promising candidates for bio-applications Chemistry of Materials 18 31693172 10.1021/cm060530f.CrossRefGoogle Scholar
Sprynskyy, M., Lebedynets, M., Terzyk, A.P., Kowalczyk, P., Namiesnik, J. and Buszewski, B., 2005 Ammonium sorption from aqueous solutions by the natural zeolite Transcarpathian clinoptilolite studied under dynamic conditions Journal of Colloid and Interface Science 284 408415 10.1016/j.jcis.2004.10.058.CrossRefGoogle ScholarPubMed
Wang, S. and Ariyanto, E., 2007 Competitive adsorption of malachite green and Pb ions on natural zeolite Journal of Colloid and Interface Science 314 2531 10.1016/j.jcis.2007.05.032.CrossRefGoogle ScholarPubMed
Xu, R., Pang, W., Yu, J., Huo, Q. and Chen, J., 2007 Chemistry of Zeolite and related Porous Materials. Synthesis and Structure New York Wiley 10.1002/9780470822371.CrossRefGoogle Scholar
Zorpas, A.A., Inglezakis, V.J. and Loizidou, M., 2008 Heavy metals fractionation before, during and after composting of sewage sludge with natural zeolite Waste Management 2 20542060 10.1016/j.wasman.2007.09.006.CrossRefGoogle Scholar