Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T06:18:26.029Z Has data issue: false hasContentIssue false

Rietveld Refinement of the Kaolinite Structure at 1.5 K

Published online by Cambridge University Press:  28 February 2024

David L. Bish*
Affiliation:
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, Mexico 87545

Abstract

The crystal structure of Keokuk kaolinite, including all H atoms, was refined in space group C1 using low-temperature (1.5 K) neutron powder diffraction data (λ = 1.9102 Å) and Rietveld refinement/difference-Fourier methods to Rwp = 1.78%, reduced χ2 = 3.32. Unit-cell parameters are: a = 5.1535(3) Å, b = 8.9419(5) Å, c = 7.3906(4) Å, α = 91.926(2)°, β = 105.046(2)°, γ = 89.797(2)°, and V = 328.70(5) Å3. Unit-cell parameters show that most of the thermal contraction occurred along the [001] direction, apparently due to a decrease in the interlayer distance. The non-H structure is very similar to published C1 structures, considering the low temperature of data collection, but the H atom positions are distinct. The inner OH group is essentially in the plane of the layers, and the inner-surface OH groups make angles of 60°–73° with the (001) plane. Difference-Fourier maps show minor anisotropy of the inner-OH group in the [001] direction, but the inner-surface OH groups appear to have their largest vibrational (or positional disorder) component parallel to the layers. Although no data indicate a split position of any of the H sites in kaolinite, there is support for limited random positional disorder of the H atoms. However, these data provided no support for a space group symmetry lower than C1.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R. N. Jr. 1989() Kaolinite: Energy calculations bearing on the location of the inner hydrogen atoms: in Abstracts with Program, 1989 Annual Meeting of the Geological Society of America, St. Louis, Missouri, p. A43 (abstract).Google Scholar
Adams, J. M., 1983 Hydrogen atom positions in kaolinite by neutron profile refinement Clays & Clay Minerals 31 352356 10.1346/CCMN.1983.0310504.CrossRefGoogle Scholar
Baur, W. H. and Tillmanns, E., 1986 How to avoid unnecessarily low symmetry in crystal structure determinations Acta Crystallogr. B42 95111 10.1107/S0108768186098518.CrossRefGoogle Scholar
Bish, D. L. and Johnston, C. T., 1993 Rietveld refinement and Fourier-transform infrared spectroscopic study of the dickite structure at low temperature Clays & Clay Minerals 41 297304 10.1346/CCMN.1993.0410304.CrossRefGoogle Scholar
Bish, D. L. and Von Dreele, R. B., 1989 Rietveld refinement of non-hydrogen atomic positions in kaolinite Clays & Clay Minerals 37 289296 10.1346/CCMN.1989.0370401.CrossRefGoogle Scholar
Bookin, A. S., Drits, V. A., Plançon, A. and Tchoubar, C., 1989 Stacking faults in kaolin-group minerals in the light of real structural features Clays & Clay Minerals 37 297307 10.1346/CCMN.1989.0370402.CrossRefGoogle Scholar
Brindley, G. W., Kao, C.-C. Harrison, J. L., Lipsicas, M. and Raythatha, R., 1986 Relation between structural disorder and other characteristics of kaolinites and dickites Clays & Clay Minerals 34 239249 10.1346/CCMN.1986.0340303.CrossRefGoogle Scholar
Brindley, G. W. and Robinson, K., 1946 The structure of kaolinite Mineral. Mag. 27 242253.Google Scholar
Dollase, W. A., 1986 Correction of intensities for preferred orientation in powder diffractometry: Application of the March model J. Appl. Crystallogr. 19 267272 10.1107/S0021889886089458.CrossRefGoogle Scholar
Giese, R. F. Jr. and Datta, P., 1973 Hydroxyl orientation in kaolinite, dickite, and nacrite Amer. Mineral. 58 471479.Google Scholar
Giese, R. F. Jr., 1982 Theoretical studies of the kaolin minerals: Electrostatic calculations Bull. Mineral. 105 417424.Google Scholar
Guthrie, G. D., and Bish, D. L., (1991) Ionic modeling of the hydrogen sites in the kaolin polymorphs: in Program and Abstracts, 28th Annual Meeting of the Clay Minerals Society, Houston, Texas, p. 63 (abstract).Google Scholar
Hess, A. C. and Saunders, V. R., 1992 Periodic ab initio Hartree-Fock calculations of the low-symmetry mineral kaolinite J. Phys. Chem. 96 43674374 10.1021/j100190a047.CrossRefGoogle Scholar
Johnston, C. T., Agnew, S. F. and Bish, D. L., 1990 Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite Clays & Clay Minerals 38 573583 10.1346/CCMN.1990.0380602.CrossRefGoogle Scholar
Joswig, W., and Drits, V. A., (1986) The orientation of the hydroxyl groups in dickite by X-ray diffraction: N. Jb. Miner. Mh. 1922.Google Scholar
Larson, A. C., and Von Dreele, R. B., (1988) Generalized structure analysis system: Los Alamos National Laboratory Rept. LAUR 86–748, 150 pp.Google Scholar
Pauling, L., 1930 The structure of the chlorites Proc. Natl. Acad. Sci. U.S.A. 16 578582 10.1073/pnas.16.9.578.CrossRefGoogle ScholarPubMed
Plancon, A., Giese, R. F. Jr. Snyder, R., Drits, V. A. and Bookin, A. S., 1989 Stacking faults in the kaolin-group minerals: Defect structures of kaolinite Clays & Clay Minerals 37 203210 10.1346/CCMN.1989.0370302.CrossRefGoogle Scholar
Prost, R., Dameme, A., Huard, E., Driard, J. and Leydecker, J. P., 1989 Infrared study of structural OH in kaolinite, dickite, nacrite, and poorly crystalline kaolinite at 5 to 600 K Clays & Clay Minerals 37 464468 10.1346/CCMN.1989.0370511.CrossRefGoogle Scholar
Smith, D. K., Nichols, M. C. and Zolensky, M. E., 1983 POWD10, A FORTRAN IV program for calculating X-ray powder diffraction patterns University Park, Pennsylvania The Pennsylvania State University.Google Scholar
Suitch, P. R. and Young, R. A., 1983 Atom positions in highly ordered kaolinite Clays & Clay Minerals 31 357366 10.1346/CCMN.1983.0310505.CrossRefGoogle Scholar
Thompson, J. G., Fitz Gerald, J. D. and Withers, R. L., 1989 Electron diffraction evidence for C-centering of non-hydrogen atoms in kaolinite Clays & Clay Minerals 37 563565 10.1346/CCMN.1989.0370610.CrossRefGoogle Scholar
Thompson, J. G. and Withers, R. L., 1987 A transmission electron microscopy contribution to the structure of kaolinite Clays & Clay Minerals 35 237239 10.1346/CCMN.1987.0350311.CrossRefGoogle Scholar
Von Dreele, R. B., Jorgensen, J. D. and Windsor, C. G., 1982 Rietveld refinement with spallation neutron powder diffraction data J. Appl. Crystallogr. 15 581589 10.1107/S0021889882012722.CrossRefGoogle Scholar
Young, R. A., 1988 Pressing the limits of Rietveld refinement Aust. J. Phys. 41 297310 10.1071/PH880297.CrossRefGoogle Scholar
Young, R. A. and Hewat, A. W., 1988 Verification of the triclinic crystal structure of kaolinite Clays & Clay Minerals 36 225232 10.1346/CCMN.1988.0360303.CrossRefGoogle Scholar