Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-09T02:53:44.200Z Has data issue: false hasContentIssue false

Spontaneous Rehydroxylation of a Dehydroxylated Cis-Vacant Montmorillonite

Published online by Cambridge University Press:  28 February 2024

Katja Emmerich*
Affiliation:
Environmental Engineering and Clay Mineralogy, Institute of Geotechnical Engineering, ETH-Hönggerberg Zurich CH - 8093 Zurich, Switzerland
*
Present address: Federal Institute for Geosciences and Natural Resources, Stilleweg 2, D-30655 Hannover, Germany.

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Note
Copyright
Copyright © 2000, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Drits, V.A. Besson, G. and Muller, F., 1995 An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates Clays and Clays Minerals 43 718731 10.1346/CCMN.1995.0430608.CrossRefGoogle Scholar
Emmerich, K. Madsen, F.T. and Kahr, G., 1999 Dehydrox-ylation behavior of heat-treated and steam-treated hom-oionic cis-vacant montmorillonites Clays and Clay Minerals 47 591604 10.1346/CCMN.1999.0470506.CrossRefGoogle Scholar
Grim, R.E. and Bradley, W.F., 1948 Rehydration and dehydration of the clay minerals American Mineralogist 33 5059.Google Scholar
Grim, R.E. and Kulbicki, G., 1961 Montmorillonite: High temperature reactions and classification American Mineralogist 46 13291369.Google Scholar
Guggenheim, S., 1990 The dynamics of thermal decomposition in aluminous dioctahedral 2:1 layer silicates: A crystal chemical model Sciences Geologiques 2 99107.Google Scholar
Guggenheim, S. and Koster van Groos, A.F., 1992 High-pressure differential thermal analysis (HP-DTA): II. De-hydroxylation reactions at elevated pressures in phyllosili-cates Journal of Thermal Analysis 38 25292548 10.1007/BF01974630.CrossRefGoogle Scholar
Hamilton, J.D., 1971 Beidellitic montmorillonite from Swansea, New South Wales Clay Minerals 9 107123 10.1180/claymin.1971.009.1.08.CrossRefGoogle Scholar
Heller, L. Farmer, V.C. Mackenzie, R.C. Mitchell, B.D. and Taylor, H.F.W., 1962 The dehydroxylation of triphormic dioctahedral clay minerals Clay Minerals Bulletin 5 5672 10.1180/claymin.1962.005.28.02.CrossRefGoogle Scholar
Heller-Kallai, L. and Rozenson, P., 1980 Dehydroxylation of dioctahedral phyllosilicates Clays and Clay Minerals 28 355368 10.1346/CCMN.1980.0280505.CrossRefGoogle Scholar
Horváth, I. and Konta, J., 1985 The structural and crystallochemical aspects in dehydroxylation of clays Proceedings of the 5th Meeting of the European Clay Groups Prague Univ-erzita Karlova 7783.Google Scholar
Jonas, E.C., 1954 The reversible dehydroxylization of clay minerals Proceedings of the 3rd National Conference on Clays and Clay Minerals 6672.CrossRefGoogle Scholar
Kahr, G. Frey, M. and Madsen, E.T., 1996 Thermoanalytical dehydroxylation of clays and combustion of organic compounds in a prograde metamorphoic Liassic black shale formation, Central Swiss Alps Schweizerische Mineralogische und Petrografische Mitteilungen 76 165173.Google Scholar
Mackenzie, R.C., 1957 The montmorillonite differential thermal curve Bulletin du Groupe Francais des Argiles 9 715 10.3406/argil.1957.935.CrossRefGoogle Scholar
Schultz, L.G., 1969 Lithium and potassium absorption, Dehydroxylation temperature and structural water content of aluminous smectites Clays and Clay Minerals 17 115149 10.1346/CCMN.1969.0170302.CrossRefGoogle Scholar