Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T18:47:10.526Z Has data issue: false hasContentIssue false

Sustained Antibacterial Effect of Levofloxacin Drug in a Polymer Matrix by Hybridization With A Layered Double Hydroxide

Published online by Cambridge University Press:  01 January 2024

Su-Joung Ko
Affiliation:
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Korea
Jin-Song Jung
Affiliation:
Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
Gyeong-Hyeon Gwak
Affiliation:
Beamline Research Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongsangbukdo, 37673, Republic of Korea
Hyoung-Jun Kim
Affiliation:
Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi, 10408, Republic of Korea
Fabrice Salles*
Affiliation:
ICGM, University Montpellier, CNRS, ENSCM, Montpellier, France
Jae-Min Oh
Affiliation:
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Korea
*
*E-mail address of corresponding author: fabrice.salles@umontpellier.fr

Abstract

The immobilization of antimicrobial drugs can be used to expand the application of antibacterial properties to consumer products. The purpose of this study was to stabilize an antimicrobial agent, levofloxacin (LVX), for sustained antibacterial activity by immobilizing the drug molecules in a layered double hydroxide (LDH) and embedded in a polyurethane substrate. As-prepared MgAl-LDH was calcined at 400°C and reconstructed with LVX for intercalation. The X-ray diffraction patterns and cross-sectional transmission electron microscopy images showed lattice expansion along the crystallographic c axis upon LVX intercalation, suggesting successful loading of the drug. Fourier-transform infrared spectra revealed that the structure of LVX was well preserved between LDH layers. Elemental analysis indicated that the loading capacity of LVX in the hybrid was 41.7%. Bacterial-colony forming inhibitory assay on Bacillus subtilis exhibited ~100% antibacterial activity of both LVX alone and LVX-LDH hybrid (LL). To determine sustainability of antibacterial activity by the hybrid, either LVX alone or LL hybrid was loaded in the polyurethane (PU) substrate for which antibacterial activity was evaluated before and after immersion in a phosphate-buffered saline for 3 days. The LVX-composited PU showed a dramatic decrease in antibacterial activity, down to 0% after buffer treatment; LL-composited PU still contained antibacterial activity (~34% of colony suppression) after phosphate-buffered saline immersion.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is based on a presentation made during the 4th Asian Clay Conference, Thailand, June 2020.

References

Al-Hussaini, S., Al-Ghanimi, A., & Kadhim, H. J. S. J. M. R. (2018). Preparation of nanohybrid antibiotic from levofloxacin and determination its inhibitory efficacy against staphylococcus aureus isolated from diabetic foot ulcer. Scientific Journal of Medical Research, 2, 2935.CrossRefGoogle Scholar
Bin Hussein, M. Z., Zainal, Z., Yahaya, A. H., & Foo, D. W. V. (2002). Controlled release of a plant growth regulator, α-naphthaleneacetate from the lamella of Zn-Al-layered double hydroxide nanocomposite. Journal of Controlled Release, 82, 417427.CrossRefGoogle ScholarPubMed
Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173301.CrossRefGoogle Scholar
Choy, J.-H., Kwak, S.-Y., Park, J.-S., Jeong, Y.-J., & Portier, J. (1999). Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. Journal of the American Chemical Society, 121, 13991400.CrossRefGoogle Scholar
Choy, J.-H., Kwak, S.-Y., Jeong, Y.-J., & Park, J.-S. (2000). Inorganic layered double hydroxides as nonviral vectors. Angewandte Chemie International Edition, 39, 40414045.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Conlon, B. P., Nakayasu, E. S., Fleck, L. E., LaFleur, M. D., Isabella, V. M., Coleman, K., Leonard, S. N., Smith, R. D., Adkins, J. N., & Lewis, K. (2013). Activated clpp kills persisters and eradicates a chronic biofilm infection. Nature, 503, 365370.CrossRefGoogle ScholarPubMed
Culity, B. D., & Stock, S. R. (1978). Elements of X-ray Diffraction (2nd ed.). Pearson.Google Scholar
Garcez, A. S., Ribeiro, M. S., Tegos, G. P., Núñez, S. C., Jorge, A. O. C., & Hamblin, M. R. (2007). Antimicrobial photodynamic therapy combined with conventional endodontic treatment to eliminate root canal biofilm infection. Lasers in Surgery and Medicine, 39, 5966.CrossRefGoogle ScholarPubMed
Geuli, O., Metoki, N., Zada, T., Reches, M., Eliaz, N., & Mandler, D. (2017). Synthesis, coating, and drug-release of hydroxyapatite nanoparticles loaded with antibiotics. Journal of Materials Chemistry B, 5, 78197830.CrossRefGoogle ScholarPubMed
Gu, Z., Thomas, A. C., Xu, Z. P., Campbell, J. H., & Lu, G. Q. (2008). In vitro sustained release of LMWH from MgAl-layered double hydroxide nanohybrids. Chemistry of Materials, 20, 37153722.CrossRefGoogle Scholar
Hoffman, L. R., D'Argenio, D. A., MacCoss, M. J., Zhang, Z., Jones, R. A., & Miller, S. I. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 436, 11711175.CrossRefGoogle ScholarPubMed
Hong, Y., Xi, Y., Zhang, J., Wang, D., Zhang, H., Yan, N., He, S., & Du, J. (2018). Polymersome–hydrogel composites with combined quick and long-term antibacterial activities. Journal of Materials Chemistry B, 6, 63116321.CrossRefGoogle ScholarPubMed
Hu, J., Quan, Y., Lai, Y., Zheng, Z., Hu, Z., Wang, X., Dai, T., Zhang, Q., & Cheng, Y. (2017). A smart aminoglycoside hydrogel with tunable gel degradation, on-demand drug release, and high antibacterial activity. Journal of Controlled Release, 247, 145152.CrossRefGoogle Scholar
Jalvandi, J., White, M., Gao, Y., Truong, Y. B., Padhye, R., & Kyratzis, I. L. (2017). Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release. Materials Science and Engineering: C, 73, 440446.CrossRefGoogle Scholar
Kang, H., Kim, H.-J., Yang, J.-H., Kim, T.-H., Choi, G., Paek, S.-M., Choi, A.-J., Choy, J.-H., & Oh, J.-M. (2015). Intracrystalline structure and release pattern of ferulic acid intercalated into layered double hydroxide through various synthesis routes. Applied Clay Science, 112–113, 3239.CrossRefGoogle Scholar
Khodaverdi, E., Soleimani, H. A., Mohammadpour, F., & Hadizadeh, F. (2016). Synthetic zeolites as controlled-release delivery systems for anti-inflammatory drugs. Chemical Biology & Drug Design, 87, 849857.CrossRefGoogle ScholarPubMed
Kim, K.-M., Park, C.-B., Choi, A.-J., Choi, H.-J., & Oh, J.-M. (2011). Selective DNA adsorption on layered double hydroxide nanoparticles. Bulletin of the Korean Chemical Society, 32, 22172221.CrossRefGoogle Scholar
Kim, H.-J., Kim, T.-H., Kim, H.-M., Hong, I.-K., Kim, E.-J., Choi, A.-J., Choi, H.-J., & Oh, J.-M. (2016a). Nano-biohybrids of engineered nanoclays and natural extract for antibacterial agents. Applied Clay Science, 134, 1925.CrossRefGoogle Scholar
Kim, T.-H., Kim, H.-J., Choi, A.-J., Choi, H.-J., & Oh, J.-M. (2016b). Hybridization between natural extract of Angelica gigas akai and inorganic nanomaterial of layered double hydroxide via reconstruction reaction. Journal of Nanoscience and Nanotechnology, 16, 11381145.CrossRefGoogle Scholar
Kim, H.-J., Lee, G. J., Choi, A.-J., Kim, T.-H., & Kim, T.-i., & Oh, J.-M. (2018a). Layered double hydroxide nanomaterials encapsulating Angelica gigas nakai extract for potential anticancer nanomedicine. Frontiers in Pharmacology, 9, 723. https://doi.org/10.3389/fphar.2018.00723.CrossRefGoogle ScholarPubMed
Kim, T.-H., Hong, I. T., & Oh, J.-M. (2018b). Size- and surface charge-controlled layered double hydroxides for efficient algal flocculation. Environmental Science: Nano, 5, 183190.Google Scholar
Kong, X., Jin, L., Wei, M., & Duan, X. (2010). Antioxidant drugs intercalated into layered double hydroxide: Structure and in vitro release. Applied Clay Science, 49, 324329.CrossRefGoogle Scholar
Latifi, L., Sohrabnezhad, S., & Hadavi, M. (2017). Mesoporous silica as a support for poorly soluble drug: Influence of ph and amino group on the drug release. Microporous and Mesoporous Materials, 250, 148157.CrossRefGoogle Scholar
Lucke, M., Schmidmaier, G., Sadoni, S., Wildemann, B., Schiller, R., Haas, N. P., & Raschke, M. (2003). Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone, 32, 521531.CrossRefGoogle ScholarPubMed
Mouzam, M. I., Dehghan, M. H. G., Asif, S., Sahuji, T., & Chudiwal, P. (2011). Preparation of a novel floating ring capsule-type dosage form for stomach specific delivery. Saudi Pharmaceutical Journal, 19, 8593.CrossRefGoogle ScholarPubMed
Nazar, M. F., Saleem, M. A., Bajwa, S. N., Yameen, B., Ashfaq, M., Zafar, M. N., & Zubair, M. (2017). Encapsulation of antibiotic levofloxacin in biocompatible microemulsion formulation: Insights from microstructure analysis. The Journal of Physical Chemistry B, 121, 437443.CrossRefGoogle ScholarPubMed
Oh, J.-M., Hwang, S.-H., & Choy, J.-H. (2002). The effect of synthetic conditions on tailoring the size of hydrotalcite particles. Solid State Ionics, 151, 285291.CrossRefGoogle Scholar
Oh, J.-M., Park, M., Kim, S.-T., Jung, J.-Y., Kang, Y.-G., & Choy, J.-H. (2006). Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system. Journal of Physics and Chemistry of Solids, 67, 10241027.CrossRefGoogle Scholar
Olanoff, L. S., Anderson, J. M., & Jones, R. D. (1979). Sustained release of gentamicin from prosthetic heart valves. ASAIO Journal, 25, 334338.CrossRefGoogle ScholarPubMed
Patel, D. K., Biswas, A., & Maiti, P. (2016). 6-nanoparticle-induced phenomena in polyurethanes. In Cooper, S. L. & Guan, J. (Eds.), Advances in Polyurethane Biomaterials (pp. 171194). Woodhead Publishing (an Elsevier imprint, Amsterdam).CrossRefGoogle Scholar
Pinto, F. C. H., Silva-Cunha, A., Pianetti, G. A., Ayres, E., Oréfice, R. L., & Da Silva, G. R. (2011). Montmorillonite clay-based polyurethane nanocomposite as local triamcinolone acetonide delivery system. Journal of Nanomaterials, 2011, 111.CrossRefGoogle Scholar
Ragel, C. V., & Vallet-Regí, M. (2000). In vitro bioactivity and gentamicin release from glass–polymer–antibiotic composites. Journal of Biomedical Materials Research, 51, 424429.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Rives, V. (2001). Layered Double Hydroxides: Present and Future. Nova Publishers.Google Scholar
Saha, K., Butola, B. S., & Joshi, M. (2014). Drug release behavior of polyurethane/clay nanocomposite: Film vs. Nanofibrous web. Journal of Applied Polymer Science, 131, 40824.CrossRefGoogle Scholar
Sanbhal, N., Saitaer, X., Li, Y., Mao, Y., Zou, T., Sun, G., & Wang, L. J. P. (2018). Controlled levofloxacin release and antibacterial properties of β-cyclodextrins-grafted polypropylene mesh devices for hernia repair. Polymers (Basel), 10, 493.CrossRefGoogle ScholarPubMed
Senapati, S., Thakur, R., Verma, S. P., Duggal, S., Mishra, D. P., Das, P., Shripathi, T., Kumar, M., Rana, D., & Maiti, P. (2016). Layered double hydroxides as effective carrier for anticancer drugs and tailoring of release rate through interlayer anions. Journal of Controlled Release, 224, 186198.CrossRefGoogle ScholarPubMed
Sultana, N., Arayne, M. S., Rizvi, S. B. S., Haroon, U., & Mesaik, M. A. (2013). Synthesis, spectroscopic, and biological evaluation of some levofloxacin metal complexes. Medicinal Chemistry Research, 22, 13711377.CrossRefGoogle Scholar
Traba, C., & Liang, J. F. (2015). Bacteria responsive antibacterial surfaces for indwelling device infections. Journal of Controlled Release, 198, 1825.CrossRefGoogle ScholarPubMed
Vasilev, K., Poulter, N., Martinek, P., & Griesser, H. J. (2011). Controlled release of levofloxacin sandwiched between two plasma polymerized layers on a solid carrier. ACS Applied Materials & Interfaces, 3, 48314836.CrossRefGoogle ScholarPubMed
Wang, C.-H., Hou, G.-G., Du, Z.-Z., Cong, W., Sun, J.-F., Xu, Y.-Y., & Liu, W.-S. (2016). Synthesis, characterization and antibacterial properties of polyurethane material functionalized with quaternary ammonium salt. Polymer Journal, 48, 259265.CrossRefGoogle Scholar
Wiyantoko, B., Kurniawati, P., Purbaningtias, T. E., & Fatimah, I. (2015). Synthesis and characterization of hydrotalcite at different Mg/Al molar ratios. Procedia Chemistry, 17, 2126.CrossRefGoogle Scholar
Zhang, R., Jones, M. M., Moussa, H., Keskar, M., Huo, N., Zhang, Z., Visser, M. B., Sabatini, C., Swihart, M. T., & Cheng, C. (2019). Polymer–antibiotic conjugates as antibacterial additives in dental resins. Biomaterials Science, 7, 287295.CrossRefGoogle Scholar