Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-21T06:38:49.227Z Has data issue: false hasContentIssue false

Tetrahedral Iron in Smectite: A Critical Comment

Published online by Cambridge University Press:  02 April 2024

C. M. Cardile*
Affiliation:
Chemistry Division, D.S.I.R., Private Bag, Petone, New Zealand

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © 1989, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aronowitz, S., Coyne, L., Lawless, J. and Rishpon, J., 1982 Quantum-chemical modeling of smectite clays Inorg. Chem. 21 35893593.CrossRefGoogle Scholar
Baur, W. H., 1964 On the cation and water positions in faujasite Amer. Mineral 49 697704.Google Scholar
Beran, S., Jiru, P. and Wichterlova, B., 1982 Fe ions in the cationic sites and in the skeleton of faujasites. A quantum chemical study Zeolites 2 252256.CrossRefGoogle Scholar
Berry, F. J., Hayes, M. H. B. and Jones, S. L., 1986 Investigations of intercalation in inorganic solids with layered structures: Iron-57 Mössbauer spectroscopy studies of size-fractionated and iron-exchanged montmorillonite clays Inorg. Chim. Acta 122 1924.CrossRefGoogle Scholar
Besson, G., Bookin, A. S., Dainyak, L. G., Rautureau, M., Tsipursky, S. I., Tchoubar, C. and Drits, V. A., 1983 Use of diffraction and Mössbauer methods for the structural and crystallo-chemical characterization of nontronites J. Appl. Crystallogr. 16 374383.CrossRefGoogle Scholar
Bonnin, D., Calas, G., Suquet, H. and Pezerat, H., 1985 Site occupancy of Fe3+ in Garfield nontronite: A spectroscopic study Phys. Chem. Minerals 12 5564.CrossRefGoogle Scholar
Brown, I WM and Cardile, C.M., 1988 Tetrahedral Fe2+-Fe3+ ordering in MgAl2O4 spinel Phys. Chem. Minerals .Google Scholar
Brunot, B., 1973 Application of the Mössbauer effect to the study of clay minerals: A hydrothermal nontronite and a nontronite from Lake Malawi N. Jahrb. Mineral. Monat. 10 452461.Google Scholar
Cardile, C. M., 1985 Structural studies of selected smectites Wellington, New Zealand University of Wellington.Google Scholar
Cardile, C.M., 1987 Structural studies of montmorillonites by 57Fe Mössbauer spectroscopy Clay Miner. 22 387394.CrossRefGoogle Scholar
Cardile, C.M., 1988 Structural site occupation of iron within 2:1 dioctahedral phyllosilicates studied by 57Fe Mössbauer spectroscopy Hyp. Int. 41 767770.CrossRefGoogle Scholar
Cardile, C. M. and Brown, I. W. M., 1988 An “Fe Mössbauer spectroscopic and X-ray diffraction study of New Zealand glauconites Clay Miner. 23 1325.CrossRefGoogle Scholar
Cardile, C. M., Childs, C. W. and Whitton, J. S., 1987 The effect of CBD treatment on standard and soil smectites as evidenced by Mössbauer spectroscopy Aust. J. Soil Res. 25 145154.CrossRefGoogle Scholar
Cardile, C. M. and Johnston, J. H., 1985 Structural studies of nontronites with different iron contents by 57Fe Mössbauer spectroscopy Clays & Clay Minerals 33 295300.CrossRefGoogle Scholar
Cardile, C. M. and Johnston, J. H., 1986 A Fe Mössbauer spectroscopic study of montmorillonites: A new interpretation Clays & Clay Minerals 34 307313.CrossRefGoogle Scholar
Cardile, C. M. and Slade, P. G., 1987 Structural study of a benzidine-vermiculite intercalate having a high tetrahe-dral-iron content by 57Fe Mössbauer spectroscopy Clays & Clay Minerals 35 203207.CrossRefGoogle Scholar
Cardile, C. M. and Slade, P. G., 1988 Structural studies of vermiculites with different iron contents by 57Fe Mössbauer spectroscopy N. Jahrb. Mineral. Monat. 1988 297308.Google Scholar
Coey, J. M. D., 1980 Clay minerals and their transformations studied with nuclear techniques: The contribution of Mössbauer spectroscopy At. Energy Rev. 18 73124.Google Scholar
Dyar, M. D. and Burns, R. G., 1986 Mössbauer spectral study of ferruginous one-layer trioctahedral micas Amer. Mineral. 71 955965.Google Scholar
Goodman, B. A., 1978 The Mössbauer spectra of nontronites: Consideration of an alternative assignment Clays & Clay Minerals 36 176177.CrossRefGoogle Scholar
Goodman, B. A., Russell, J. D., Fraser, A. R. and Woodhams, F. W. D., 1976 A Mössbauer and I.R. spectroscopic study of the structure of nontronite Clays & Clay Minerals 24 5359.CrossRefGoogle Scholar
Grimes, N. W., Thompson, P. and Kay, H. F., 1983 New symmetry and structure for spinel Proc. Roy. Soc. Lond. 386 333345.Google Scholar
Heller-Kallai, L. and Rozenson, I., 1981 The use of Mössbauer spectroscopy of iron in clay mineralogy Phys. Chem. Minerals 7 223238.CrossRefGoogle Scholar
Johnston, J. H. and Cardile, C. M., 1985 Iron sites in nontronite and the effect of interlayer cations from Mössbauer spectra Clays & Clay Minerals 33 2130.CrossRefGoogle Scholar
Johnston, J. H. and Cardile, C. M., 1987 Iron substitution in montmorillonite, illite, and glauconite by 57Fe Mössbauer spectroscopy Clays & Clay Minerals 35 170176.CrossRefGoogle Scholar
Lear, P. R. and Stucki, J. W., 1987 Intervalence electron transfer and magnetic exchange in reduced nontronite Clays & Clay Minerals 35 373378.CrossRefGoogle Scholar
Luca, V. and Cardile, C. M., 1988 Thermally induced cation migration in Na and Li montmorillonite Phys. Chem. Minerals .CrossRefGoogle Scholar
MacKenzie, K. J. D. Brown, I. W. M. Cardile, C. M. and Meinhold, R. H., 1987 The thermal reactions of mus-covite studied by high-resolution solid-state 29Si and 27A1 N.M.R. J. Mat. Sci. 22 26452654.CrossRefGoogle Scholar
Meagher, A., Nair, J. and Szostak, R., 1988 A Mössbauer study of ZSM-5 type ferrisilicates Zeolites 8 311.CrossRefGoogle Scholar
Navrotsky, A. and Kleppa, O. J., 1967 The thermodynamics of cation distributions in simple spinels J. Inorg. Nucl. Chem. 29 27012714.CrossRefGoogle Scholar
Osthaus, B. B., 1954 Chemical determination of tetrahedral ions in nontronite and montmorillonite Clays and Clay Minerals 327 404416.Google Scholar
Ross, C. S. and Hendricks, S. B., 1945 Minerals of the montmorillonite group—Their origin and relation to soils and clays U.S. Geol. Surv. Prof. Pap. 205B 2379.Google Scholar
Rozenson, I. and Heller-Kallai, L., 1977 Mössbauer spectra of dioctahedral smectites Clays & Clay Minerals 25 94101.CrossRefGoogle Scholar
Russell, J. D. and Clark, D. R., 1978 The effect of Fe-for-Si substitution on the b-dimension of nontronite Clay Miner. 13 133136.CrossRefGoogle Scholar
Tardy, Y. and Garrels, R. M., 1974 A method of estimating the Gibbs energies of formation of layer silicates Geochim. Cosmochim. Acta 38 11011116.CrossRefGoogle Scholar
Taylor, G. L., Ruotsala, A. P. and Keeling, R. D., 1968 Analysis of iron in layer silicates by Mössbauer spectroscopy Clays & Clay Minerals 16 381391.CrossRefGoogle Scholar
Tsipursky, S. I. and Drits, V. A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction Clay Miner. 19 177193.CrossRefGoogle Scholar