Skip to main content Accessibility help
×
Home

Emotional distress, brain functioning, and biobehavioral processes in cancer patients: a neuroimaging review and future directions

Published online by Cambridge University Press:  23 April 2019


Joaquim C. Reis
Affiliation:
Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
Michael H. Antoni
Affiliation:
Department of Psychology, University of Miami, Coral Gables, Florida, USA Cancer Control Program, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
Luzia Travado
Affiliation:
Psycho-oncology, Champalimaud Clinical and Research Center, Champalimaud Foundation, Lisbon, Portugal
Corresponding
E-mail address:

Abstract

Despite emerging evidence that distress and adversity can contribute to negative health outcomes in cancer, little is known about the brain networks, regions, or circuits that can contribute to individual differences in affect/distress states and health outcomes in treated cancer patients. To understand the state-of-the-science in this regard, we reviewed neuroimaging studies with cancer patients that examined the associations between negative affect (distress) and changes in the metabolism or structure of brain regions. Cancer patients showed changes in function and/or structure of key brain regions such as the prefrontal cortex, thalamus, amygdala, hippocampus, cingulate cortex (mainly subgenual area), hypothalamus, basal ganglia (striatum and caudate), and insula, which are associated with greater anxiety, depression, posttraumatic stress disorder (PTSD) symptoms, and distress. These results provide insights for understanding the effects of these psychological and emotional factors on peripheral stress-related biobehavioral pathways known to contribute to cancer progression and long-term health outcomes. This line of work provides leads for understanding the brain-mediated mechanisms that may explain the health effects of psychosocial interventions in cancer patients and survivors. A multilevel and integrated model for distress management intervention effects on psychological adaptation, biobehavioral processes, cancer pathogenesis, and clinical outcomes is proposed for future research.


Type
Review
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

This work was supported by Fundação para a Ciência e Tecnologia in the framework of the project Distress and regional brain metabolism: a correlational study in metastatic breast cancer patients. PTDC/MHC-PSC/3897/2014, and through funding from the National Cancer Institute (CA064710, HHSN261200800001E), Florida Department of Health (6BC06), and the University of Miami Sylvester Comprehensive Cancer Center.


References

Ganz, PA, Hahn, EE. Implementing a survivorship care plan for patients with breast cancer. J Clin Oncol. 2008;26(5):759767. doi: 10.1200/JCO.2007.14.2851.CrossRefGoogle ScholarPubMed
Lehto, R, Therrien, B.Death concerns among individuals newly diagnosed with lung cancer. Death Stud. 2010;34(10):931946. doi: 10.1080/07481181003765477.CrossRefGoogle ScholarPubMed
McFarland, DC, Shaffer, KM, Tiersten, A, et al.Physical symptom burden and its association with distress, anxiety, and depression in breast cancer. Psychosomatics. 2018;59(5):464471. doi: 10.1016/j.psym.2018.01.005.CrossRefGoogle ScholarPubMed
Purnell, JQ, Andersen, BL. Religious practice and spirituality in the psychological adjustment of survivors of breast cancer. Couns Values. 2009;53(3):165182.CrossRefGoogle ScholarPubMed
Jim, HS, Richardson, SA, Golden-Kreutz, DM, et al.Strategies used in coping with a cancer diagnosis predict meaning in life for survivors. Heal Psychol. 2006;25(6):753761. doi: 10.1037/0278-6133.25.6.753.CrossRefGoogle ScholarPubMed
Antoni, MH.Psychosocial intervention effects on adaptation, disease course and biobehavioral processes in cancer. Brain Behav Immun. 2013;30(Suppl):S88S98. doi: 10.1016/j.bbi.2012.05.009.CrossRefGoogle Scholar
Travado, L, Reis, JC.Breast cancer meanings: a cognitive-developmental study. Psychooncology. 2013;22(9):20162023. doi: 10.1002/pon.3246.CrossRefGoogle ScholarPubMed
Kreitler, S, Peleg, D, Ehrenfeld, M.Stress, self-efficacy and quality of life in cancer patients. Psychooncology. 2007;16(4):329341. doi: 10.1002/pon.1063.CrossRefGoogle ScholarPubMed
Bergerot, CD, Araujo, TC. Assessment of distress and quality of life of cancer patients over the course of chemotherapy. Invest Educ Enferm. 2014;32(2):216224. doi: 10.1590/S0120-53072014000200004.CrossRefGoogle Scholar
Bauer, MR, Bright, EE, MacDonald, JJ, et al.Quality of life in patients with pancreatic cancer and their caregivers: a systematic review. Pancreas. 2018;47(4):368375. doi: 10.1097/MPA.0000000000001025.CrossRefGoogle ScholarPubMed
Weitman, ES, Perez, M, Thompson, JF, et al.Quality of life patient-reported outcomes for locally advanced cutaneous melanoma. Melanoma Res. 2018;28(2):134142. doi: 10.1097/CMR.0000000000000425.CrossRefGoogle ScholarPubMed
Montazeri, A.Health-related quality of life in breast cancer patients: a bibliographic review of the literature from 1974 to 2007. J Exp Clin Cancer Res. 2008;27(1):32. doi: 10.1186/1756-9966-27-32.CrossRefGoogle ScholarPubMed
Howard-Anderson, J, Ganz, PA, Bower, JE, et al.Quality of life, fertility concerns, and behavioral health outcomes in younger breast cancer survivors: a systematic review. J Natl Cancer Inst. 2012;104(5):386405. doi: 10.1093/jnci/djr541.CrossRefGoogle ScholarPubMed
Adler, NE, Page, AEK, eds. Cancer Care for the Whole Patient: Meeting Psychosocial Health Needs. Washington, DC: National Academies Press; 2008.Google Scholar
Zabora, J, Brintzenhofeszoc, K, Curbow, B, et al.The prevalence of psychological distress by cancer site. Psychooncology. 2001;10(1):1928. doi: 10.1002/1099-1611(200101/02)10:1<19::AID-PON501>3.0.CO;2-6.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Grassi, L, Travado, L, Gil, F, et al.Hopelessness and related variables among cancer patients in the Southern European Psycho-oncology Study (SEPOS). Psychosomatics. 2010;51(3):201207. doi: 10.1176/appi.psy.51.3.201.CrossRefGoogle Scholar
Mitchell, AJ, Ferguson, DW, Gill, J, et al.Depression and anxiety in long-term cancer survivors compared with spouses and healthy controls: a systematic review and meta-analysis. Lancet Oncol. 2013;14(8):721732. doi: 10.1016/S1470-2045(13)70244-4.CrossRefGoogle ScholarPubMed
Linden, W, Vodermaier, A, MacKenzie, R, et al.Anxiety and depression after cancer diagnosis: prevalence rates by cancer type, gender, and age. J Affect Disord. 2012;141(2–3):343351. doi: 10.1016/j.jad.2012.03.025.CrossRefGoogle ScholarPubMed
Lutgendorf, SK, Sood, AK, Antoni, MH. Host factors and cancer progression: biobehavioral signaling pathways and interventions. J Clin Oncol. 2010;28(26):40944099. doi: 10.1200/JCO.2009.26.9357.CrossRefGoogle ScholarPubMed
Lindquist, KA, Satpute, AB, Wager, TD, et al.The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature. Cereb Cortex. 2016;26(5):19101922. doi: 10.1093/cercor/bhv001.CrossRefGoogle ScholarPubMed
Lindquist, KA, Wager, TD, Kober, H, et al.The brain basis of emotion: a meta-analytic review. Behav Brain Sci. 2012;35(3):121143. doi: 10.1017/S0140525X11000446.CrossRefGoogle ScholarPubMed
Gianaros, PJ, Wager, TD. Brain-body pathways linking psychological stress and physical health. Curr Dir Psychol Sci. 2015;24(4):313321. doi: 10.1177/0963721415581476.CrossRefGoogle ScholarPubMed
Peters, A, McEwen, BS, Friston, K. Uncertainty and stress: why it causes diseases and how it is mastered by the brain. Prog Neurobiol. 2017;156:164188. doi: 10.1016/j.pneurobio.2017.05.004.CrossRefGoogle Scholar
Lazarus, RS, Folkman, S. Stress, Appraisal, and Coping. New York: Springer; 1984.Google Scholar
Mishel, MH.Reconceptualization of the uncertainty in illness theory. Image J Nurs Sch. 1990;22(4):256262. doi: 10.1111/j.1547-5069.1990.tb00225.x.CrossRefGoogle ScholarPubMed
Christman, NJ.Uncertainty and adjustment during radiotherapy. Nurs Res. 1990;39(1):1747.CrossRefGoogle ScholarPubMed
Mishel, MH, Sorenson, DS. Uncertainty in gynecological cancer: a test of the mediating functions of mastery and coping. Nurs Res. 1991;40(3):167171.CrossRefGoogle ScholarPubMed
Wright, LJ, Afari, N, Zautra, A. The illness uncertainty concept: a review. Curr Pain Headache Rep. 2009;13(2):133138. doi: 10.1007/s11916-009-0023-z.CrossRefGoogle Scholar
Karatsoreos, IN, McEwen, BS. Stress and brain function. In: Fink, G, Pfaff, DW, Levine, JE, eds. Handbook of Neuroendocrinology. San Diego: Academic Press; 2012: 497507. doi: https://doi.org/10.1016/B978-0-12-375097-6.10021-6.CrossRefGoogle Scholar
McEwen, BS.Allostasis and the epigenetics of brain and body health over the life course. JAMA Psychiatry. 2017;74(6):551552. doi: 10.1001/jamapsychiatry.2017.0270.CrossRefGoogle ScholarPubMed
McEwen, BS, Nasca, C, Gray, JD. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology. 2016;41(1):323. doi: 10.1038/npp.2015.171.CrossRefGoogle ScholarPubMed
Davidson, RJ, McEwen, BS. Social influences on neuroplasticity: stress and interventions to promote well-being. Nat Neurosci. 2012;15(5):689695. doi: 10.1038/nn.3093.CrossRefGoogle ScholarPubMed
McEwen, BS.Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87(3):873904. doi: 10.1152/physrev.00041.2006.CrossRefGoogle Scholar
McEwen, BS, Gianaros, PJ. Stress- and allostasis-induced brain plasticity. Annu Rev Med. 2011;62(1):431445. doi: 10.1146/annurev-med-052209-100430.CrossRefGoogle ScholarPubMed
Jahn, AL, Fox, AS, Abercrombie, HC, et al.Subgenual prefrontal cortex activity predicts individual differences in hypothalamic-pituitary-adrenal activity across different contexts. Biol Psychiatry. 2010;67(2):175181. doi: 10.1016/j.biopsych.2009.07.039.CrossRefGoogle ScholarPubMed
Tashiro, M, Kubota, K, Itoh, M, et al.Hypometabolism in the limbic system of cancer patients observed by positron emission tomography. Psychooncology. 1999;8(4):283286. doi: 10.1002/(SICI)1099-1611(199907/08)8:4<283::AID-PON384>3.0.CO;2-A.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Davidson, RJ, Pizzagalli, D, Nitschke, JB, et al.Depression: perspectives from affective neuroscience. Annu Rev Psychol. 2002;53(1):545574. doi: 10.1146/annurev.psych.53.100901.135148.CrossRefGoogle ScholarPubMed
Gotlib, IH, Hamilton, JP. Neuroimaging and depression. Curr Dir Psychol Sci. 2008;17(2):159163. doi: 10.1111/j.1467-8721.2008.00567.x.CrossRefGoogle Scholar
Hamilton, JP, Etkin, A, Furman, DJ, et al.Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of baseline activation and neural response data. Am J Psychiatry. 2012;169(7):693703. doi: 10.1176/appi.ajp.2012.11071105.CrossRefGoogle ScholarPubMed
McGrath, CL, Kelley, ME, Holtzheimer, PE, et al.Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry. 2013;70(8):821829. doi: 10.1001/jamapsychiatry.2013.143.CrossRefGoogle Scholar
Sacher, J, Neumann, J, Fünfstück, T, et al.Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disord. 2012;140(2):142148. doi: 10.1016/j.jad.2011.08.001.CrossRefGoogle ScholarPubMed
Drevets, W, Bogers, W, Raichle, M.Functional anatomical correlates of antidepressant drug treatment using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol. 2002;12(6):527544. doi: 10.1016/S0924-977X(02)00102-5.CrossRefGoogle ScholarPubMed
Drevets, WC, Raichle, ME. Neuroanatomical circuits in depression: implications for treatment mechanisms. Psychopharmacol Bull. 1992;28(3):261274.Google ScholarPubMed
Gonul, AS, Kula, M, Bilgin, AG, et al.The regional cerebral blood flow changes in major depressive disorder with and without psychotic features. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(6):10151021. doi: 10.1016/j.pnpbp.2004.05.036.CrossRefGoogle ScholarPubMed
Mayberg, HS, Lozano, AM, Voon, V, et al.Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651660. doi: 10.1016/j.neuron.2005.02.014.CrossRefGoogle ScholarPubMed
Kegeles, LS, Malone, KM, Slifstein, M, et al.Response of cortical metabolic deficits to serotonergic challenge in familial mood disorders. Am J Psychiatry. 2003;160(1):7682. doi: 10.1176/appi.ajp.160.1.76.CrossRefGoogle ScholarPubMed
Müller, VI, Cieslik, EC, Serbanescu, I, et al.Altered brain activity in unipolar depression revisited. JAMA Psychiatry. 2017;74(1):4755. doi: 10.1001/jamapsychiatry.2016.2783.CrossRefGoogle ScholarPubMed
Palmer, SM, Crewther, SG, Carey, LM. A meta-analysis of changes in brain activity in clinical depression. Front Hum Neurosci. 2015;8:1045. doi: 10.3389/fnhum.2014.01045.CrossRefGoogle ScholarPubMed
Sacher, J, Neumann, J, Fünfstück, T, Soliman, A, Villringer, A, Schroeter, ML.Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disord. 2012;140(2):142148. doi: 10.1016/j.jad.2011.08.001.CrossRefGoogle ScholarPubMed
Fang, L, Yao, Z, An, J, et al.Topological organization of metabolic brain networks in pre-chemotherapy cancer with depression: a resting-State PET study. PLoS One. 2016;11(11):119. doi: 10.1371/journal.pone.0166049.CrossRefGoogle ScholarPubMed
Tashiro, M, Itoh, M, Kubota, K, et al.Relationship between trait anxiety, brain activity and natural killer cell activity in cancer patients: a preliminary PET study. Psychooncology. 2001;10(6):541546. doi: 10.1002/pon.548[pii].CrossRefGoogle ScholarPubMed
Tashiro, M, Juengling, FD, Reinhardt, MJ, et al.Depressive state and regional cerebral activity in cancer patients—a preliminary study. Med Sci Monit. 2001;7(4):687695.Google ScholarPubMed
Tashiro, M, Kubota, K, Itoh, M, et al.Regional cerebral glucose metabolism of patients with malignant diseases in different clinical phases. Med Sci Monit. 2001;7(2):226232.Google ScholarPubMed
Tashiro, M, Juengling, FD, Reinhardt, MJ, et al.Reproducibility of PET brain mapping of cancer patients. Psychooncology. 2000;9(2):157163. doi: 10.1002/(SICI)1099-1611(200003/04)9:2<157::AID-PON452>3.0.CO;2-Y.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Kumano, H, Ida, I, Oshima, A, et al.Brain metabolic changes associated with predispotion to onset of major depressive disorder and adjustment disorder in cancer patients—a preliminary PET study. J Psychiatr Res. 2007;41(7):591599. doi: 10.1016/j.jpsychires.2006.03.006.CrossRefGoogle ScholarPubMed
Inagaki, M, Yoshikawa, E, Kobayakawa, M, et al.Regional cerebral glucose metabolism in patients with secondary depressive episodes after fatal pancreatic cancer diagnosis. J Affect Disord. 2007;99(1–3):231236. doi: 10.1016/j.jad.2006.08.019.CrossRefGoogle ScholarPubMed
Zung, WWK. A self-rating depression scale. Arch Gen Psychiatry. 1965;12(1):6370. doi: 10.1001/archpsyc.1965.01720310065008.CrossRefGoogle ScholarPubMed
Taylor, JA.A personality scale of manifest anxiety. J Abnorm Soc Psychol. 1953;48(2):285290. doi: 10.1037/h0056264.CrossRefGoogle ScholarPubMed
Hamilton, M.A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23(1):5662. doi: 10.1136/jnnp.23.1.56.CrossRefGoogle Scholar
Spielberger, C. Manual for the State-Trait Anxiety Inventory (STAI). Palo Alto, CA: Consulting Psychologists Press; 1983. doi: 10.1007/978-0-387-78665-0_6709.CrossRefGoogle Scholar
Castelli, L, Tonello, D, D’Agata, F, et al.The neurobiological basis of the distress thermometer: a PET study in cancer patients. Stress Health. 2015;31(3):197203. doi: 10.1002/smi.2546.CrossRefGoogle ScholarPubMed
National Comprehensive Cancer Network. NCCN Distress Thermometer and Problem List for Patients. https://www.nccn.org/patients/resources/life_with_cancer/pdf/nccn_distress_thermometer.pdf. Accessed August 20, 2018.Google Scholar
Zigmond, AS, Snaith, RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361370. doi: 10.1111/j.1600-0447.1983.tb09716.x.CrossRefGoogle ScholarPubMed
Pessoa, L.Understanding brain networks and brain organization. Phys Life Rev. 2014;11(3):400435. doi: 10.1016/j.plrev.2014.03.005.CrossRefGoogle ScholarPubMed
Kleckner, IR, Zhang, J, Touroutoglou, A, et al.Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat Hum Behav. 2017;1(5):0069. doi: 10.1038/s41562-017-0069.CrossRefGoogle ScholarPubMed
Barrett, LF.How Emotions Are Made: The Secret Life of the Brain. Boston: Houghton Mifflin Harcourt; 2017.Google Scholar
Barrett, LF, Satpute, AB. Large scale brain networks in affective and social neuroscience—towards an integrative functional architecture of the brain. Curr Opin Neurobiol. 2013;23(3): 361372. doi: 10.1016/j.conb.2012.12.012.CrossRefGoogle Scholar
Bullmore, E, Sporns, O.Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186198. doi: 10.1038/nrn2575.CrossRefGoogle ScholarPubMed
Sheline, YI, Price, JL, Yan, Z, et al.Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci. 2010;107(24):1102011025. doi: 10.1073/pnas.1000446107.CrossRefGoogle ScholarPubMed
Kaiser, RH, Andrews-Hanna, JR, Wager, TD, et al.Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry. 2015;72(6):603611. doi: 10.1001/jamapsychiatry.2015.0071.CrossRefGoogle ScholarPubMed
Beck, AT, Steer, RA. Internal consistencies of the original and revised Beck depression inventory. J Clin Psychol. 1984;40(6):13651367. doi: 10.1002/1097-4679(198411)40:6<1365::AID-JCLP2270400615>3.0.CO;2-D.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Nakano, T, Wenner, M, Inagaki, M, et al.Relationship between distressing cancer-related recollections and hippocampal volume in cancer survivors. Am J Psychiatry. 2002;159(12):20872093. doi: 10.1176/appi.ajp.159.12.2087.CrossRefGoogle ScholarPubMed
Matsuoka, Y, Yamawaki, S, Inagaki, M, Akechi, T, Uchitomi, Y.A volumetric study of amygdala in cancer survivors with intrusive recollections. Biol Psychiatry. 2003;54(7):736743. doi: 10.1016/S0006-3223(02)01907-8.CrossRefGoogle ScholarPubMed
Inagaki, M, Matsuoka, Y, Sugahara, Y, et al.Hippocampal volume and first major depressive episode after cancer diagnosis in breast cancer survivors. Am J Psychiatry. 2004;161(12):22632270. doi: 161/12/2263 [pii]\r10.1176/appi.ajp.161.12.2263.CrossRefGoogle ScholarPubMed
Yoshikawa, E, Matsuoka, Y, Yamasue, H, et al.Prefrontal cortex and amygdala volume in first minor or major depressive episode after cancer diagnosis. Biol Psychiatry. 2006;59(8):707712. doi: 10.1016/j.biopsych.2005.08.018.CrossRefGoogle ScholarPubMed
Tashiro, M, Itoh, M, Kubota, K, et al.Neuroimaging of cancer patients for psychosocial support and patient care. Curr Med Imaging Rev. 2008;4(1):1924. wos:000253959300005.CrossRefGoogle Scholar
Barrett, LF, Simmons, WK. Interoceptive predictions in the brain. Nat Rev Neurosci. 2015;16(7):419429. doi: 10.1038/nrn3950.CrossRefGoogle Scholar
Strigo, IA, Craig, AD. Interoception, homeostatic emotions and sympathovagal balance. Philos Trans R Soc London B Biol Sci. 2016;371(1708):19. doi: 10.1098/rstb.2016.0010.CrossRefGoogle ScholarPubMed
Weingarten, CP, Strauman, TJ. Neuroimaging for psychotherapy research: current trends. Psychother Res. 2015;25(2):185213. doi: 10.1080/10503307.2014.883088.CrossRefGoogle ScholarPubMed
Geuter, S, Lindquist, MA, Wager, TD. Fundamentals of functional neuroimaging. In: Cacioppo, J, Tassinary, LG, Berntson, GG, eds. Handbook of Psychophysiology. 4th ed. New York: Cambridge University Press; 2016:4173. doi: 10.1017/9781107415782.004.CrossRefGoogle Scholar
Button, KS, Ioannidis, JPA, Mokrysz, C, et al.Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14(5):365376. doi: 10.1038/nrn3475.CrossRefGoogle ScholarPubMed
Martel, S, Bruzzone, M, Ceppi, M, et al.Risk of adverse events with the addition of targeted agents to endocrine therapy in patients with hormone receptor-positive metastatic breast cancer: a systematic review and meta-analysis. Cancer Treat Rev. 2018;62:123132. doi: 10.1016/j.ctrv.2017.09.009.CrossRefGoogle ScholarPubMed
Conroy, SK, McDonald, BC, Smith, DJ, et al.Alterations in brain structure and function in breast cancer survivors: effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Res Treat. 2013;137(2):493502. doi: 10.1007/s10549-012-2385-x.CrossRefGoogle ScholarPubMed
Ahles, TA, Root, JC. Cognitive effects of cancer and cancer treatments. Annu Rev Clin Psychol. 2018;14:425451. doi: 10.1146/annurev-clinpsy-050817.CrossRefGoogle ScholarPubMed
Cacioppo, JT, Berntson, GG. Integrative neuroscience for the behavioral sciences: implications for inductive inference. In: Berntson, GG, Cacioppo, JT, eds. Handbook of Neuroscience for the Behavioral Sciences. Hoboken, NJ: Wiley; 2009:311. doi: 10.1002/9780470478509.neubb001002.Google Scholar
Taylor, AG, Goehler, LE, Galper, DI, et al.Top-down and bottom-up mechanisms in mind-body medicine: development of an integrative framework for psychophysiological research. Explore (NY). 2010;6(1):2941. doi: 10.1016/j.explore.2009.10.004.CrossRefGoogle ScholarPubMed
Goshen, I, Yirmiya, R.Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol. 2009;30(1):3045. doi: 10.1016/j.yfrne.2008.10.001.CrossRefGoogle ScholarPubMed
Yirmiya, R, Goshen, I.Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25(2):181213. doi: 10.1016/j.bbi.2010.10.015.CrossRefGoogle ScholarPubMed
Kronfol, Z, Remick, DG.Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry. 2000;157(5):683694. doi: 10.1176/appi.ajp.157.5.683.CrossRefGoogle ScholarPubMed
Wilson, CJ, Finch, CE, Cohen, HJ. Cytokines and cognition—the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc. 2002;50(12):20412056. doi: 10.1046/j.1532-5415.2002.50619.x.CrossRefGoogle ScholarPubMed
Quan, N, Banks, WA.Brain-immune communication pathways. Brain Behav Immun. 2007;21(6):727735. doi: 10.1016/j.bbi.2007.05.005.CrossRefGoogle ScholarPubMed
Hoemann, K, Gendron, M, Barrett, LF.Mixed emotions in the predictive brain. Curr Opin Behav Sci. 2017;15:5157. doi: 10.1016/j.cobeha.2017.05.013.CrossRefGoogle ScholarPubMed
Sterling, P.Allostasis: a model of predictive regulation. Physiol Behav. 2012;106(1):515. doi: 10.1016/j.physbeh.2011.06.004.CrossRefGoogle Scholar
Miller, GE, Cohen, S, Ritchey, AK. Chronic psychological stress and the regulation of pro-inflammatory cytokines: a glucocorticoid-resistance model. Health Psychol. 2002;21(6):531541. doi: 10.1037//0278-6133.21.6.531.CrossRefGoogle ScholarPubMed
Goldapple, K, Segal, Z, Garson, C, et al.Modulation of cortical-limbic pathways in major depression. Arch Gen Psychiatry. 2004;61(1):3441. doi: 10.1001/archpsyc.61.1.34.CrossRefGoogle ScholarPubMed
Aupperle, RL, Allard, CB, Simmons, AN, et al.Neural responses during emotional processing before and after cognitive trauma therapy for battered women. Psychiatry Res. 2013;214(1):4855. doi: 10.1016/j.pscychresns.2013.05.001.CrossRefGoogle ScholarPubMed
Damasio, A, Carvalho, GB.The nature of feelings: evolutionary and neurobiological origins. Nat Rev Neurosci. 2013;14(2):143152. doi: 10.1038/nrn3403.CrossRefGoogle ScholarPubMed
Craig, AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655666. doi: 10.1038/nrn894.CrossRefGoogle Scholar
Ceunen, E, Vlaeyen, JWS, Van Diest, I. On the origin of interoception. Front Psychol. 2016;7:743. doi: 10.3389/fpsyg.2016.00743.CrossRefGoogle ScholarPubMed
Craig, AD.Interoception and emotion: a neuroanatomical perspective. In: Lewis, M, Haviland-Jones, JM, Barrett, LF, eds. Handbook of Emotions. 3rd ed. New York: Guilford Press; 2008:272292.Google Scholar
Critchley, HD, Harrison, NA. Visceral influences on brain and behavior. Neuron. 2013;77(4):624638. doi: 10.1016/j.neuron.2013.02.008.CrossRefGoogle ScholarPubMed
Dantzer, R, O’Connor, JC, Freund, GG, et al.From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):4656. doi: 10.1038/nrn2297.CrossRefGoogle Scholar
Critchley, HD, Garfinkel, SN. Interoception and emotion. Curr Opin Psychol. 2017;17:714. doi: 10.1016/j.copsyc.2017.04.020.CrossRefGoogle ScholarPubMed
Dantzer, R, Kelley, KW.Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21(2):153160. doi: 10.1016/j.bbi.2006.09.006.CrossRefGoogle ScholarPubMed
Walker, AK, Kavelaars, A, Heijnen, CJ, et al.Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev. 2013;66(1):80101. doi: 10.1124/pr.113.008144.CrossRefGoogle ScholarPubMed
Wang, X, Walitt, B, Saligan, L, et al.Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine. 2015;72(1):8696. doi: 10.1016/j.cyto.2014.12.006.CrossRefGoogle ScholarPubMed
Bompaire, F, Durand, T, Léger-Hardy, I, et al.Chemotherapy-related cognitive impairment or « chemobrain »: concept and state of art. Geriatr Psychol Neuropsychiatr Vieil. 2017;15(1):8998. doi: 10.1684/pnv.2017.0659.Google ScholarPubMed
Hurria, A, Somlo, G, Ahles, T.Renaming “chemobrain”. Cancer Invest. 2007;25(6):373377. doi: 10.1080/07357900701506672.CrossRefGoogle ScholarPubMed
Cheung, YT, Ng, T, Shwe, M, et al.Association of proinflammatory cytokines and chemotherapy-associated cognitive impairment in breast cancer patients: a multi-centered, prospective, cohort study. Ann Oncol. 2015;26(7):14461451. doi: 10.1093/annonc/mdv206.CrossRefGoogle ScholarPubMed
Kesler, SR.Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiol Aging. 2014;35(Suppl 2):S11S19. doi: 10.1016/j.neurobiolaging.2014.03.036.CrossRefGoogle ScholarPubMed
Buckner, RL, Andrews-Hanna, JR, Schacter, DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:138. doi: 10.1196/annals.1440.011.CrossRefGoogle ScholarPubMed
Simó, M, Rifà-Ros, X, Rodriguez-Fornells, A, Bruna, J.Chemobrain: a systematic review of structural and functional neuroimaging studies. Neurosci Biobehav Rev. 2013;37(8):13111321. doi: 10.1016/j.neubiorev.2013.04.015.CrossRefGoogle ScholarPubMed
Costanzo, ES, Sood, AK, Lutgendorf, SK. Biobehavioral influences on cancer progression. Immunol Allergy Clin North Am. 2011;31(1):109132. doi: 10.1016/j.iac.2010.09.001.CrossRefGoogle ScholarPubMed
Lutgendorf, SK, Andersen, BL. Biobehavioral approaches to cancer progression and survival. Am Psychol. 2015;70(2):186197. doi: 10.1037/a0035730.CrossRefGoogle Scholar
Ader, R, Cohen, N, Felten, D.Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet. 1995;345(8942):99103. doi: 10.1016/S0140-6736(95)90066-7.CrossRefGoogle ScholarPubMed
Lutgendorf, SK, Costanzo, ES. Psychoneuroimmunology and health psychology: an integrative model. Brain Behav Immun. 2003;17(4):225232. doi: 10.1016/S0889-1591(03)00033-3.CrossRefGoogle Scholar
McDonald, PG, O’Connell, M, Lutgendorf, SK. Psychoneuroimmunology and cancer: a decade of discovery, paradigm shifts, and methodological innovations. Brain Behav Immun. 2013;30(Suppl):S1S9. doi: 10.1016/J.BBI.2013.01.003.CrossRefGoogle Scholar
Antoni, MH, Lutgendorf, SK, Cole, SW, et al.The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer. 2006;6(3):240248. doi: 10.1038/nrc1820.CrossRefGoogle ScholarPubMed
Cole, SW, Nagaraja, AS, Lutgendorf, SK, et al.Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer. 2015;15(9):563572. doi: 10.1038/nrc3978.CrossRefGoogle ScholarPubMed
Abercrombie, HC, Giese-Davis, J, Sephton, S, et al.Flattened cortisol rhythms in metastatic breast cancer patients. Psychoneuroendocrinology. 2004;29(8):10821092. doi: 10.1016/j.psyneuen.2003.11.003.CrossRefGoogle ScholarPubMed
Sephton, SE, Sapolsky, RM, Kraemer, HC, et al.Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst. 2000;92(12):9941000. doi: 10.1093/JNCI/92.12.994.CrossRefGoogle ScholarPubMed
Cohen, L, Cole, SW, Sood, AK, et al.Depressive symptoms and cortisol rhythmicity predict survival in patients with renal cell carcinoma: role of inflammatory signaling. PLoS One. 2012;7(8):e42324. doi: 10.1371/journal.pone.0042324.CrossRefGoogle ScholarPubMed
Sephton, SE, Lush, E, Dedert, EA, et al.Diurnal cortisol rhythm as a predictor of lung cancer survival. Brain Behav Immun. 2013;30(Suppl):S163S170. doi: 10.1016/j.bbi.2012.07.019.CrossRefGoogle ScholarPubMed
Siegel, RL, Miller, KD, Jemal, A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):730. doi: 10.3322/caac.21442.CrossRefGoogle ScholarPubMed
Bouchard, LC, Antoni, MH, Blomberg, BB, et al.Postsurgical depressive symptoms and proinflammatory cytokine elevations in women undergoing primary treatment for breast cancer. Psychosom Med. 2016;78(1):2637. doi: 10.1097/PSY.0000000000000261.CrossRefGoogle ScholarPubMed
Antoni, MH, Lutgendorf, SK, Blomberg, B, et al.Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics. Biol Psychiatry. 2012;71(4):366372. doi: 10.1016/j.biopsych.2011.10.007.CrossRefGoogle ScholarPubMed
Antoni, MH, Jacobs, JM, Bouchard, LC, et al.Post-surgical depressive symptoms and long-term survival in non-metastatic breast cancer patients at 11-year follow-up. Gen Hosp Psychiatry. 2017;44:1621. doi: 10.1016/j.genhosppsych.2016.10.002.CrossRefGoogle ScholarPubMed
Antoni, MH, Bouchard, LC, Jacobs, JM, et al.Stress management, leukocyte transcriptional changes and breast cancer recurrence in a randomized trial: an exploratory analysis. Psychoneuroendocrinology. 2016;74(6188):269277. doi: 10.1016/j.psyneuen.2016.09.012.CrossRefGoogle Scholar
Cole, SW, Sood, AK. Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res. 2012;18(5):12011206. doi: 10.1158/1078-0432.CCR-11-0641.CrossRefGoogle Scholar
Cole, SW.Human social genomics. PLoS Genet. 2014;10(8):410. doi: 10.1371/journal.pgen.1004601.CrossRefGoogle ScholarPubMed
Slavich, GM, Cole, SW. The emerging field of human social genomics. Clin Psychol Sci. 2013;1(3):331348. doi: 10.1177/2167702613478594.CrossRefGoogle ScholarPubMed
Miller, G, Chen, E, Cole, SW.Health psychology: developing biologically plausible models linking the social world and physical health. Annu Rev Psychol. 2009;60(1):501524. doi: 10.1146/annurev.psych.60.110707.163551.CrossRefGoogle ScholarPubMed
Cohen, S, Doyle, WJ, Skoner, DP. Psychological stress, cytokine production, and severity of upper respiratory illness. Psychosom Med. 1999;61(2):175180. doi: 10.1097/00006842-199903000-00009.CrossRefGoogle ScholarPubMed
Antoni, MH, Lechner, S, Diaz, A, et al.Cognitive behavioral stress management effects on psychosocial and physiological adaptation in women undergoing treatment for breast cancer. Brain Behav Immun. 2009;23(5):580591. doi: 10.1016/j.bbi.2008.09.005.CrossRefGoogle ScholarPubMed
Van Der Pompe, G, Antoni, MH, Heijnen, CJ. Elevated basal cortisol levels and attenuated ACTH and cortisol responses to a behavioral challenge in women with metastatic breast cancer. Psychoneuroendocrinology. 1996;21(4):361374. doi: 10.1016/0306-4530(96)00009-1.CrossRefGoogle ScholarPubMed
Antoni, MH, Lechner, SC, Kazi, A, et al.How stress management improves quality of life after treatment for breast cancer. J Consult Clin Psychol. 2006;74(6):11431152. doi: 10.1037/0022-006X.74.6.1152.CrossRefGoogle ScholarPubMed
Phillips, KM, Antoni, MH, Carver, CS, et al.Stress management skills and reductions in serum cortisol across the year after surgery for non-metastatic breast cancer. Cognit Ther Res. 2011;35(6):595600. doi: 10.1007/s10608-011-9398-3.CrossRefGoogle Scholar
Phillips, KM, Antoni, MH, Lechner, SC, et al.Stress management intervention reduces serum cortisol and increases relaxation during treatment for nonmetastatic breast cancer. Psychosom Med. 2008;70(9):10441049. doi: 10.1097/PSY.0b013e318186fb27.CrossRefGoogle ScholarPubMed
Andersen, BL, Farrar, WB, Golden-Kreutz, DM, et al.Psychological, behavioral, and immune changes after a psychological intervention: a clinical trial. J Clin Oncol. 2004;22(17):35703580. doi: 10.1200/JCO.2004.06.030.CrossRefGoogle ScholarPubMed
Andersen, BL, Yang, H-C, Farrar, WB, etal.Psychologic intervention improves survival for breast cancer patients. Cancer. 2008;113(12):34503458. doi: 10.1002/cncr.23969.CrossRefGoogle ScholarPubMed
Stagl, JM, Lechner, SC, Carver, CS, et al.A randomized controlled trial of cognitive-behavioral stress management in breast cancer: survival and recurrence at 11-year follow-up. Breast Cancer Res Treat. 2015;154(2):319328. doi: 10.1007/s10549-015-3626-6.CrossRefGoogle ScholarPubMed
Andersen, BL, Thornton, LM, Shapiro, CL, et al.Biobehavioral, immune, and health benefits following recurrence for psychological intervention participants. Clin Cancer Res. 2010;16(12):32703278. doi: 10.1158/1078-0432.CCR-10-0278.CrossRefGoogle ScholarPubMed
Thornton, LM, Andersen, BL, Carson, WE. Immune, endocrine, and behavioral precursors to breast cancer recurrence: a case-control analysis. Cancer Immunol Immunother. 2008;57(10):14711481. doi: 10.1007/s00262-008-0485-6.CrossRefGoogle ScholarPubMed
Thornton, LM, Andersen, BL, Schuler, TA, et al.A psychological intervention reduces inflammatory markers by alleviating depressive symptoms: secondary analysis of a randomized controlled trial. Psychosom Med. 2009;71(7):715724. doi: 10.1097/PSY.0b013e3181b0545c.CrossRefGoogle ScholarPubMed
Antoni, MH.Stress Management Intervention for Women with Breast Cancer. Washington, DC: American Psychological Association; 2003. doi: 10.1037/10488-000.CrossRefGoogle Scholar
Antoni, MH, Lehman, JM, Kilbourn, KM, et al.Cognitive-behavioral stress management intervention decreases the prevalence of depression and enhances benefit finding among women under treatment for early-stage breast cancer. Health Psychol. 2001;20(1):2032. doi: 10.1037/0278-6133.20.1.20.CrossRefGoogle ScholarPubMed
Cruess, DG, Antoni, MH, McGregor, BA, et al.Cognitive-behavioral stress management reduces serum cortisol by enhancing benefit finding among women being treated for early stage breast cancer. Psychosom Med. 2000;62(3):304308.CrossRefGoogle ScholarPubMed
McGregor, BA, Antoni, MH, Boyers, A, et al.Cognitive-behavioral stress management increases benefit finding and immune function among women with early-stage breast cancer. J Psychosom Res. 2004;56(1):18. doi: 10.1016/S0022-3999(03)00036-9.CrossRefGoogle ScholarPubMed
Beck, AT, Haigh, EAP. Advances in cognitive theory and therapy: the generic cognitive model. Annu Rev Clin Psychol. 2014;10(1):124. doi: 10.1146/annurev-clinpsy-032813-153734.CrossRefGoogle ScholarPubMed
Ellis, A, Dryden, W.The Practice of Rational Emotive Behavior Therapy. New York: Springer; 1997.Google Scholar
Beck, AT, Dozois, DJA. Cognitive therapy: current status and future directions. Annu Rev Med. 2011;62:397409. doi: 10.1146/annurev-med-052209-100032.CrossRefGoogle ScholarPubMed
Hofmann, SG, Asmundson, GJG, Beck, AT. The science of cognitive therapy. Behav Ther. 2013;44(2):199212. doi: 10.1016/j.beth.2009.01.007.CrossRefGoogle ScholarPubMed
Beck, AT.The evolution of the cognitive model of depression and its neurobiological correlates. Am J Psychiatry. 2008;165(8):969977. doi: 10.1176/appi.ajp.2008.08050721.CrossRefGoogle ScholarPubMed
Harmer, CJ, O’sullivan, U, Massey-Chase, R, et al.Effect of acute antidepressant administration on negative affective bias in depressed patients. Am J Psychiatry. 2009;166(10):11781184. doi: 10.1176/appi.ajp.2009.09020149.CrossRefGoogle ScholarPubMed
Dobson, D, Dobson, K.Evidence-Based Practice of Cognitive-Behavioral Therapy. New York: Guilford Press; 2009. doi: 10.1080/16506070903190260.Google Scholar
Sharpe, L, Sensky, T, Timberlake, N, Ryan, B, et al.A blind, randomized, controlled trial of cognitive-behavioural intervention for patients with recent onset rheumatoid arthritis: preventing psychological and physical morbidity. Pain. 2001;89(2–3):275283. doi: 10.1016/S0304-3959(00)00379-1.CrossRefGoogle ScholarPubMed
Leventhal, H, Phillips, LA, Burns, E. The common-sense model of self-regulation (CSM): a dynamic framework for understanding illness self-management. J Behav Med. 2016;39(6):935946. doi: 10.1007/s10865-016-9782-2.CrossRefGoogle ScholarPubMed
Collie, K, Bottorff, JL, Long, BC. A narrative view of art therapy and art making by women with breast cancer. J Health Psychol. 2006;11(5):761775. doi: 10.1177/1359105306066632.CrossRefGoogle ScholarPubMed
Vickberg, SM, Bovbjerg, DH, DuHamel, KN, et al.Intrusive thoughts and psychological distress among breast cancer survivors: global meaning as a possible protective factor. Behav Med. 2000;25(4):152160. doi: 10.1080/08964280009595744.CrossRefGoogle ScholarPubMed
Lee, V, Cohen, SR, Edgar, L, et al.Meaning-making and psychological adjustment to cancer: development of an intervention and pilot results. Oncol Nurs Forum. 2006;33(2):291302. doi: 10.1007/s00268-005-0191-x.CrossRefGoogle ScholarPubMed
Lee, V, Cohen, SR, Edgar, L, Laizner, AM, et al.Meaning-making and psychological adjustment to cancer: development of an intervention and pilot results. Oncol Nurs Forum. 2006;33(2):291302. doi: 10.1188/06.ONF.291-302.CrossRefGoogle ScholarPubMed
Antoni, MH, Wimberly, SR, Lechner, SC, et al.Reduction of cancer-specific thought intrusions and anxiety symptoms with a stress management intervention among women undergoing treatment for breast cancer. Am J Psychiatry. 2006;163(10):17911797. doi: 10.1176/ajp.2006.163.10.1791.CrossRefGoogle ScholarPubMed
Ritchie, CS, Kvale, E, Fisch, MJ. Multimorbidity: an issue of growing importance for oncologists. J Oncol Pract. 2011;7(6):371374. doi: 10.1200/JOP.2011.000460.CrossRefGoogle ScholarPubMed
Sarfati, D, Koczwara, B, Jackson, C.The impact of comorbidity on cancer and its treatments. CA Cancer J Clin. 2016;66(4):337350. doi: 10.3322/caac.21342.CrossRefGoogle Scholar
Fu, M, Axelrod, D, Guth, A, et al.Comorbidities and quality of life among breast cancer survivors: a prospective study. J Pers Med. 2015;5(3):229242. doi: 10.3390/jpm5030229.CrossRefGoogle ScholarPubMed
Søgaard, M, Thomsen, RW, Bossen, KS, et al.The impact of comorbidity on cancer survival: a review. Clin Epidemiol. 2013;5(Suppl 1):329. doi: 10.2147/CLEP.S47150.CrossRefGoogle ScholarPubMed
Blask, DE, Hill, SM, Dauchy, RT, et al.Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night. J Pineal Res. 2011;51(3):259269. doi: 10.1111/j.1600-079X.2011.00888.x.CrossRefGoogle ScholarPubMed
Payne, J, Piper, B, Rabinowitz, I, Zimmerman, B.Biomarkers, fatigue, sleep, and depressive symptoms in women with breast cancer: a pilot study. Oncol Nurs Forum. 2006;35(4):635642. doi: 10.1188/06.ONF.775-783.CrossRefGoogle Scholar
Roscoe, JA, Kaufman, ME, Matteson-Rusby, SE, et al.Cancer-related fatigue and sleep disorders. Oncologist. 2007;12(Suppl 1):3542. doi: 10.1634/theoncologist.12-S1-35.CrossRefGoogle ScholarPubMed
Cash, E, Sephton, SE, Chagpar, AB, et al.Circadian disruption and biomarkers of tumor progression in breast cancer patients awaiting surgery. Brain Behav Immun. 2015;48:102114. doi: 10.1016/j.bbi.2015.02.017.CrossRefGoogle ScholarPubMed
Filipski, E, King, VM, Li, XM, et al.Disruption of circadian coordination accelerates malignant growth in mice. Pathologie Biologie. 2003;51(4):216219. doi: 10.1016/S0369-8114(03)00034-8.CrossRefGoogle ScholarPubMed
Filipski, E, Li, XM, Lévi, F. Disruption of circadian coordination and malignant growth. Cancer Causes Control. 2006;17(4):509514. doi: 10.1007/s10552-005-9007-4.CrossRefGoogle ScholarPubMed
Steel, JL, Terhorst, L, Collins, KP, et al.Prospective analyses of cytokine mediation of sleep and survival in the context of advanced cancer. Psychosom Med. 2018;80(5):483491. doi: 10.1097/PSY.0000000000000579.CrossRefGoogle ScholarPubMed
Basaria, S, Muller, DC, Carducci, MA, et al.Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen-deprivation therapy. Cancer. 2006;106(3):581588. doi: 10.1002/cncr.21642.CrossRefGoogle ScholarPubMed
Felicetti, F, Fortunati, N, Brignardello, E.Cancer survivors: An expanding population with an increased cardiometabolic risk. Diabetes Res Clin Pract. 2018;143:432442.CrossRefGoogle ScholarPubMed
Mottillo, S, Filion, KB, Genest, J, et al.The metabolic syndrome and cardiovascular risk: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):11131132. doi: 10.1016/j.jacc.2010.05.034.CrossRefGoogle ScholarPubMed
Mehta, LS, Watson, KE, Barac, A, et al.Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation. 2018;137(8):e30e66. doi: 10.1161/CIR.0000000000000556.CrossRefGoogle ScholarPubMed
Chrousos, GP.The role of stress and the hypothalamic–pituitary–adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. Int J Obes Relat Metab Disord. 2000;24(Suppl 2):S50S55. doi: 10.1038/sj.ijo.0801278.CrossRefGoogle ScholarPubMed
Bergmann, N, Gyntelberg, F, Faber, J.The appraisal of chronic stress and the development of the metabolic syndrome: a systematic review of prospective cohort studies. Endocr Connect. 2014;3(2):R55R80. doi: 10.1530/EC-14-0031.CrossRefGoogle ScholarPubMed
Miller, AH, Ancoli-Israel, S, Bower, JE, et al.Neuroendocrine-immune mechanisms of behavioral comorbidities in patients with cancer. J Clin Oncol. 2008;26(6):971982. doi: 10.1200/JCO.2007.10.7805.CrossRefGoogle ScholarPubMed
Gulliksson, M, Burrell, G, Vessby, B, etal.Randomized controlled trial of cognitive behavioral therapy vs standard treatment to prevent recurrent cardiovascular events in patients with coronary heart disease: Secondary Prevention in Uppsala Primary Health Care project (SUPRIM). Arch Intern Med. 2011;171(2):134140.CrossRefGoogle Scholar
Libby, P, Ridker, PM, Maseri, A. Inflammation and atherosclerosis. Circulation. 2002;105(9):11351143. doi: 10.1161/hc0902.104353.CrossRefGoogle ScholarPubMed
Ben-Eliyahu, S.Cancer metastasis: promotion by stress and surgery. In: Opp, MR, ed. Primer of Psychoneuroimmunology Research. Los Angeles, CA: The Psychoneuroimmunology Research Society; 2016:155164.Google Scholar
Shaashua, L, Shabat-Simon, M, Haldar, R, et al.Perioperative COX-2 and β-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clin Cancer Res. 2017;23(16):4651-4661. doi: 10.1158/1078-0432.CCR-17-0152.CrossRefGoogle Scholar
Rubinov, M, Sporns, O.Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):10591069. doi: 10.1016/j.neuroimage.2009.10.003.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 9
Total number of PDF views: 140 *
View data table for this chart

* Views captured on Cambridge Core between 23rd April 2019 - 30th November 2020. This data will be updated every 24 hours.

Hostname: page-component-6d4bddd689-7dcxl Total loading time: 2.201 Render date: 2020-11-30T18:25:03.145Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Mon Nov 30 2020 17:39:52 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }