Skip to main content

Animal models of obsessive-compulsive spectrum disorders

  • Laure-Sophie Camilla d'Angelo (a1), Dawn M. Eagle (a1), Jon E. Grant (a2), Naomi A. Fineberg (a3) (a4), Trevor W. Robbins (a1) and Samuel R. Chamberlain (a1) (a5)...

Obsessive-compulsive disorder (OCD) and related conditions (trichotillomania, pathological skin-picking, pathological nail-biting) are common and disabling. Current treatment approaches fail to help a significant proportion of patients. Multiple tiers of evidence link these conditions with underlying dysregulation of particular cortico-subcortical circuitry and monoamine systems, which represent targets for treatment. Animal models designed to capture aspects of these conditions are critical for several reasons. First, they help in furthering our understanding of neuroanatomical and neurochemical underpinnings of the obsessive-compulsive (OC) spectrum. Second, they help to account for the brain mechanisms by which existing treatments (pharmacotherapy, psychotherapy, deep brain stimulation) exert their beneficial effects on patients. Third, they inform the search for novel treatments. This article provides a critique of key animal models for selected OC spectrum disorders, beginning with initial work relating to anxiety, but moving on to recent developments in domains of genetic, pharmacological, cognitive, and ethological models. We find that there is a burgeoning literature in these areas with important ramifications, which are considered, along with salient future lines of research.

Corresponding author
*Addresses for correspondence: Ms. Laure-Sophie d'Angelo, Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB; (Email;)
Dr. Samuel Chamberlain, Level E4, Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB0 0QQ, UK. (
Hide All

The authors thank the ECNP Research Network Initiative Obsessive Compulsive and Related Disorders Research Network.

Hide All
1. Fontenelle, LF, Mendlowicz, MV, Versiani, M. The descriptive epidemiology of obsessive-compulsive disorder. Prog Neuropsychopharmacol Biolog Psychiatry. 2006; 30(3): 327337.
2. Zohar, AH. The epidemiology of obsessive-compulsive disorder in children and adolescents. Child Adolesc Psychiatr Clin N Am. 1999; 8(3): 445460.
3. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. Version IV-TR. Arlington, VA: American Psychiatric Association; 2000.
4. Hollander, E. Obsessive-compulsive spectrum phenomena and the DSM-V developmental process. CNS Spectr. 2008; 13(2): 107108.
5. Hollander, E, Wong, CM. Obsessive-compulsive spectrum disorders. J Clin Psychiatry. 1995; 56(suppl 4): 36; discussion 53–55.
6. Phillips, KA. The obsessive-compulsive spectrums. Psychiatr Clin North Am. 2002; 25(4): 791809.
7. Stein, DJ, Hollander, E. Obsessive-compulsive spectrum disorders. J Clin Psychiatry. 1995; 56(6): 265266.
8. Swedo, SE, Leonard, HL. Trichotillomania: an obsessive compulsive spectrum disorder? Psychiatr Clin North Am. 1992; 15(4): 777790.
9. Bienvenu, OJ, Samuels, JF, Riddle, MA, etal. The relationship of obsessive-compulsive disorder to possible spectrum disorders: results from a family study. Biol Psychiatry. 2000; 48(4): 287293.
10. Fineberg, NA, Gale, TM. Evidence-based pharmacotherapy of obsessive compulsive disorder. Int J Neuropsychopharmacol. 2005; 8(1): 107129.
11. Chamberlain, SR, Odlaug, BL, Boulougouris, V, Fineberg, NA, Grant, JE. Trichotillomania: neurobiology and treatment. Neurosci Biobehav Rev. 2009; 33(6): 831842.
12. Solomon, RL, Kamin, LJ, Wynne, LC. Traumatic avoidance learning: the outcomes of several extinction procedures with dogs. J Abnorm Psychol. 1953; 48(2): 291302.
13. Meyer, V. Modification of expectations in cases with obsessional rituals. Behav Res Ther. 1966; 4(4): 273280.
14. Chamberlain, SR, Blackwell, AD, Fineberg, N, Robbins, TW, Sahakian, BJ. The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci Biobehav Rev. 2005; 29(3): 399419.
15. Menzies, L, Chamberlain, SR, Laird, AR, etal. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev. 2008; 32(3): 525549.
16. Stein, DJ, Chamberlain, SR, Fineberg, N. An A-B-C model of habit disorders: hair-pulling, skin-picking, and other stereotypic conditions. CNS Spectr. 2006; 11(11): 824827.
17. Nestler, EJ, Hyman, SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010; 13: 11611169.
18. McKinney, WT Jr, Bunney, WE Jr. Animal model of depression. I. Review of evidence: implications for research. Arch Gen Psychiatry. 1969; 21(2): 240248.
19. Matthysse, S. Animal models in psychiatric research. Prog Brain Res. 1986; 65: 259270.
20. Geyer, MA, Markou, A. Animal models of psychiatric disorders. In Bloom FE, Kupfer DJ, eds. Psychopharmacology: The Fourth Generation of Progress. New York: Raven Press; 1995: 787798.
21. Geyer, MA, Markou, A. The role of preclinical models in the development of psychotropic drugs. In: Davis KL, Coyle JT, Nemeroff C, eds. Neuropsychopharmacology: The Fifth Generation of Progress. Lippincott, Williams, & Wilkins; Philadelphia, PA, 2002: 445455.
22. Willner, P. The validity of animal models of depression. Psychopharmacology. 1984; 83(1): 116.
23. Willner, P. Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog Neuropsychopharmacol Biol Psychiatry. 1986; 10: 677690.
24. Pigott, TA, Seay, SM. A review of the efficacy of selective serotonin reuptake inhibitors in obsessive-compulsive disorder. J Clin Psychiatry. 1999; 60(2): 101106.
25. Hettema, JM, Neale, MC, Kendler, KS. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am J Psychiatry. 2001; 158(10): 15681578.
26. Jonnal, AH, Gardner, CO, Prescott, CA, Kendler, KS. Obsessive and compulsive symptoms in a general population sample of female twins. Am J Med Genet. 2000; 96(6): 791796.
27. Wang, L, Simpson, HB, Dulawa, SC. Assessing the validity of current mouse genetic models of obsessive-compulsive disorder. Behav Pharmacol. 2009; 20: 119133.
28. Novak, CE, Keuthen, NJ, Stewart, SE, Pauls, DL. A twin concordance study of trichotillomania. Am J Med Genet B Neuropsychiatr Genet. 2009; 150B(7): 944949.
29. Joel, D. Current animal models of obsessive compulsive disorder: a critical review. Prog Neuropsychopharmacol Biol Psychiatry. 2006; 30(3): 374388.
30. Boulougouris, V, Chamberlain, SR, Robbins, TW. Cross-species models of OCD spectrum disorders. Psychiatry Res. 2009; 170(1): 1521.
31. Greer, JM, Capecchi, MR. Hoxb8 is required for normal grooming behavior in mice. Neuron. 2002; 33(1): 2334.
32. Campbell, KM, de Lecea, L, Severynse, DM, etal. OCD-Like behaviors caused by a neuropotentiating transgene targeted to cortical and limbic D1+ neurons. J Neurosci. 1999; 19(12): 50445053.
33. Campbell, KM, McGrath, MJ, Burton, FH. Behavioral effects of cocaine on a transgenic mouse model of cortical-limbic compulsion. Brain Res. 1999; 833(2): 216224.
34. Campbell, KM, McGrath, MJ, Burton, FH. Differential response of cortical-limbic neuropotentiated compulsive mice to dopamine D1 and D2 receptor antagonists. Eur J Pharmacol. 1999; 371(2–3): 103111.
35. McGrath, MJ, Campbell, KM, Burton, FH. The role of cognitive and affective processing in a transgenic mouse model of cortical-limbic neuropotentiated compulsive behavior. Behav Neurosci. 1999; 113: 12491256.
36. McGrath, MJ, Campbell, KM, Veldman, MB, Burton, FH. Anxiety in a transgenic mouse model of cortical-limbic neuro-potentiated compulsive behavior. Behav Pharmacol. 1999; 10(5): 435443.
37. Nordstrom, EJ, Burton, FH. A transgenic model of comorbid Tourette's syndrome and obsessive-compulsive disorder circuitry. Mol Psychiatry. 2002; 7(6): 617625, 524.
38. Berridge, KC, Aldridge, JW, Houchard, KR, Zhuang, X. Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's. BMC Biol. 2005; 3: 4.
39. Chou-Green, JM, Holscher, TD, Dallman, MF, Akana, SF. Compulsive behavior in the 5-HT2C receptor knockout mouse. Physiol Behav. 2003; 78(4–5): 641649.
40. Young, JW, van Enkhuizen, J, Winstanley, CA, Geyer, MA. Increased risk-taking behavior in dopamine transporter knockdown mice: further support for a mouse model of mania. J Psychopharmacol. 2011; 25: 934943.
41. Zhuang, X, Oosting, RS, Jones, SR, etal. Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci U S A. 2001; 98(4): 19821987.
42. Tecott, LH, Sun, LM, Akana, SF, etal. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature. 1995; 374: 542546.
43. Nonogaki, K, Strack, AM, Dallman, MF, Tecott, LH. Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nat Med. 1998; 4: 11521156.
44. Vickers, SP, Clifton, PG, Dourish, CT, Tecott, LH. Reduced satiating effect of d-fenfluramine in serotonin 5-HT(2C) receptor mutant mice. Psychopharmacology. 1999; 143: 309314.
45. Tecott, LH, Logue, SF, Wehner, JM, Kauer, JA. Perturbed dentate gyrus function in serotonin 5-HT2C receptor mutant mice. Proc Natl Acad Sci U S A. 1998; 95: 1502615031.
46. Heisler, LK, Zhou, L, Bajwa, P, Hsu, J, Tecott, LH. Serotonin 5-HT(2C) receptors regulate anxiety-like behavior. Genes Brain Behav. 2007; 6: 491496.
47. Rocha, BA, Goulding, EH, O'Dell, LE, etal. Enhanced locomotor, reinforcing, and neurochemical effects of cocaine in serotonin 5-hydroxytryptamine 2C receptor mutant mice. J Neurosci. 2002; 22: 1003910045.
48. Tsaltas, E, Kontis, D, Chrysikakou, S, etal. Reinforced spatial alternation as an animal model of obsessive-compulsive disorder (OCD): investigation of 5-HT2C and 5-HT1D receptor involvement in OCD pathophysiology. Biol Psychiatry. 2005; 57(10): 11761185.
49. Boulougouris, V, Glennon, JC, Robbins, TW. Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology. 2008; 33(8): 20072019.
50. Welch, JM, Wang, D, Feng, G. Differential mRNA expression and protein localization of the SAP90/PSD-95-associated proteins (SAPAPs) in the nervous system of the mouse. J Comp Neurol. 2004; 472: 2439.
51. Chamberlain, SR, Menzies, LA, Fineberg, NA, etal. Grey matter abnormalities in trichotillomania: morphometric magnetic resonance imaging study. Br J Psychiatry. 2008; 193(3): 216221.
52. Fineberg, NA, Potenza, MN, Chamberlain, SR, etal. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology. 2010; 35(3): 591604.
53. Welch, JM, Lu, J, Rodriguiz, RM, etal. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature. 2007; 448(7156): 894900.
54. Bienvenu, OJ, Wang, Y, Shugart, YY, etal. Sapap3 and pathological grooming in humans: results from the OCD collaborative genetics study. Am J Med Genet B Neuropsychiatr Genet. 2009; 150B(5): 710720.
55. Zuchner, S, Wendland, JR, Ashley-Koch, AE, etal. Multiple rare SAPAP3 missense variants in trichotillomania and OCD. Mol Psychiatry. 2009; 14: 69.
56. Aruga, J, Mikoshiba, K. Identification and characterization of Slitrk, a novel neuronal transmembrane protein family controlling neurite outgrowth. Mol Cell Neurosci. 2003; 24: 117129.
57. Aruga, J, Yokota, N, Mikoshiba, K. Human SLITRK family genes: genomic organization and expression profiling in normal brain and brain tumor tissue. Gene. 2003; 315: 8794.
58. Shmelkov, SV, Hormigo, A, Jing, D, etal. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat Med. 2010; 16(5): 598602.
59. Fisher, CR, Graves, KH, Parlow, AF, Simpson, ER. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc Natl Acad Sci U S A. 1998; 95: 69656970.
60. Hill, RA, McInnes, KJ, Gong, ECH, etal. Estrogen deficient male mice develop compulsive behavior. Biol Psychiatry. 2007; 61: 359366.
61. Karayiorgou, M, Altemus, M, Galke, BL, etal. Genotype determining low catechol-O-methyltransferase activity as a risk factor for obsessive-compulsive disorder. Proc Natl Acad Sci U S A. 1997; 94(9): 45724575.
62. Pooley, EC, Fineberg, N, Harrison, PJ. The met(158) allele of catechol-O-methyltransferase (COMT) is associated with obsessive-compulsive disorder in men: case-control study and meta-analysis. Mol Psychiatry. 2007; 12(6): 556561.
63. Kumari, V, Kaviani, H, Raven, PW, Gray, JA, Checkley, SA. Enhanced startle reactions to acoustic stimuli in patients with obsessive-compulsive disorder. Am J Psychiatry. 2001; 158: 134136.
64. van den Buuse, M, Simpson, ER, Jones, ME. Prepulse inhibition of acoustic startle in aromatase knock-out mice: effects of age and gender. Genes Brain Behav. 2003; 2(2): 93102.
65. Lochner, C, Hemmings, SM, Kinnear, CJ, etal. Gender in obsessive-compulsive disorder: clinical and genetic findings. Eur Neuropsychopharmacol. 2004; 14(2): 105113.
66. Yadin, E, Friedman, E, Bridger, WH. Spontaneous alternation behavior: an animal model for obsessive-compulsive disorder? Pharmacol Biochem Behav. 1991; 40(2): 311315.
67. Fernandez-Guasti, A, Ulloa, RE, Nicolini, H. Age differences in the sensitivity to clomipramine in an animal model of obsessive-compulsive disorder. Psychopharmacology. 2003; 166: 195201.
68. Hollander, E, DeCaria, C, Gully, R, etal. Effects of chronic fluoxetine treatment on behavioral and neuroendocrine responses to meta-chlorophenylpiperazine in obsessive-compulsive disorder. Psychiatry Res. 1991; 36(1): 117.
69. Zohar, J, Insel, TR, Zohar-Kadouch, RC, Hill, JL, Murphy, DL. Serotonergic responsivity in obsessive-compulsive disorder: effects of chronic clomipramine treatment. Arch Gen Psychiatry. 1988; 45(2): 167172.
70. Papakosta, VM, Kalogerakou, S, Kontis, D, etal. 5-HT2C receptor involvement in the control of persistence in the reinforced spatial alternation animal model of obsessive-compulsive disorder. Behav Brain Res. 2013; 243: 176183.
71. Graf, M. 5-HT2c receptor activation induces grooming behaviour in rats: possible correlations with obsessive-compulsive disorder. Neuropsychopharmacol Hung. 2006; 8(1): 2328.
72. Fernandez-Guasti, A, Agrati, D, Reyes, R, Ferreira, A. Ovarian steroids counteract serotonergic drugs actions in an animal model of obsessive-compulsive disorder. Psychoneuroendocrinology. 2006; 31: 924934.
73. Umathe, SN, Vaghasiya, JM, Jain, NS, Dixit, PV. Neurosteroids modulate compulsive and persistent behavior in rodents: implications for obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33(7): 11611166.
74. Ulloa, R-E, Nicolini, H, Fernandez-Guasti, A. Sex differences on spontaneous alternation in prepubertal rats: implications for an animal model of obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2004; 28: 687692.
75. Bigos, KL, Folan, MM, Jones, MR, etal. Dysregulation of neurosteroids in obsessive compulsive disorder. J Psychiatr Res. 2009; 43: 442445.
76. Andrade, P, Fernandez-Guasti, A, Carrillo-Ruiz, JD, etal. Effects of bilateral lesions in thalamic reticular nucleus and orbitofrontal cortex in a T-maze perseverative model produced by 8-OH-DPAT in rats. Behav Brain Res. 2009; 203: 108112.
77. Jimenez-Ponce, F, Velasco-Campos, F, Castro-Farfan, G, etal. Preliminary study in patients with obsessive-compulsive disorder treated with electrical stimulation in the inferior thalamic peduncle. Neurosurgery. 2009; 65(6 suppl): 203209; discussion 209.
78. Szechtman, H, Sulis, W, Eilam, D. Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD). Behav Neurosci. 1998; 112(6): 14751485.
79. Cioli, I, Caricati, A, Nencini, P. Quinpirole- and amphetamine-induced hyperdipsia: influence of fluid palatability and behavioral cost. Behav Brain Res. 2000; 109: 918.
80. Milella, MS, Amato, D, Badiani, A, Nencini, P. The influence of cost manipulation on water contrafreeloading induced by repeated exposure to quinpirole in the rat. Psychopharmacology. 2008; 197: 379390.
81. Szechtman, H, Woody, E. Obsessive-compulsive disorder as a disturbance of security motivation. Psychol Rev. 2004; 111(1): 111127.
82. De Carolis, L, Schepisi, C, Milella, MS, Nencini, P. Clomipramine, but not haloperidol or aripiprazole, inhibits quinpirole-induced water contrafreeloading, a putative animal model of compulsive behavior. Psychopharmacology. 2011; 218: 749759.
83. Mundt, A, Klein, J, Joel, D, etal. High-frequency stimulation of the nucleus accumbens core and shell reduces quinpirole-induced compulsive checking in rats. Eur J Neurosci. 2009; 29(12): 24012412.
84. Winter, C, Mundt, A, Jalali, R, etal. High frequency stimulation and temporary inactivation of the subthalamic nucleus reduce quinpirole-induced compulsive checking behavior in rats. Exp Neur. 2008; 210(1): 217228.
85. Dvorkin, A, Silva, C, McMurran, T, etal. Features of compulsive checking behavior mediated by nucleus accumbens and orbital frontal cortex. Eur J Neurosci. 2010; 32(9): 15521563.
86. Alkhatib, AH, Dvorkin-Gheva, A, Szechtman, H. Quinpirole and 8-OH-DPAT induce compulsive checking behavior in male rats by acting on different functional parts of an OCD neurocircuit. Behav Pharmacol. 2013; 24: 6573.
87. Andersen, SL, Greene-Colozzi, EA, Sonntag, KC. A novel, multiple symptom model of obsessive-compulsive-like behaviors in animals. Biol Psychiatry. 2010; 68: 741747.
88. Chamberlain, SR, Menzies, L, Hampshire, A, etal. Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science. 2008; 321(5887): 421422.
89. Moritz, S, Hottenrott, B, Randjbar, S, etal. Perseveration and not strategic deficits underlie delayed alternation impairment in obsessive-compulsive disorder (OCD). Psychiatry Res. 2009; 170: 6669.
90. Jaafari, N, Frasca, M, Rigalleau, F, etal. Forgetting what you have checked: a link between working memory impairment and checking behaviors in obsessive-compulsive disorder. Eur Psychiatry. 2013; 28: 8793.
91. Andersen, SL. Stimulants and the developing brain. Trends Pharmacol Sci. 2005; 26(5): 237243.
92. Shanahan, NA, Holick Pierz, KA, Masten, VL, etal. Chronic reductions in serotonin transporter function prevent 5-HT1B-induced behavioral effects in mice. Biol Psychiatry. 2009; 65: 401408.
93. Shanahan, NA, Velez, LP, Masten, VL, Dulawa, SC. Essential role for orbitofrontal serotonin 1B receptors in obsessive-compulsive disorder-like behavior and serotonin reuptake inhibitor response in mice. Biol Psychiatry. 2011; 70: 10391048.
94. Koran, LM, Pallanti, S, Quercioli, L. Sumatriptan, 5-HT(1D) receptors and obsessive-compulsive disorder. Eur Neuropsychopharmacol. 2001; 11: 169172.
95. Brown, SA, Crowell-Davis, S, Malcolm, T, Edwards, P. Naloxone-responsive compulsive tail chasing in a dog. J Am Vet Med Assoc. 1987; 190(7): 884886.
96. Luescher, AU. Diagnosis and management of compulsive disorders in dogs and cats. Vet Clin North Am Small Anim Pract. 2003; 33(2): 253267, vi.
97. Luescher, UA, McKeown, DB, Dean, H. A cross-sectional study on compulsive behaviour (stable vices) in horses. Equine Vet J Suppl. 1998; (27): 1418.
98. Swanepoel, N, Lee, E, Stein, DJ. Psychogenic alopecia in a cat: response to clomipramine. J S Afr Vet Assoc. 1998; 69(1): 22.
99. Grindlinger, HM, Ramsay, E. Compulsive feather picking in birds. Arch Gen Psychiatry. 1991; 48(9): 857.
100. Rapoport, JL, Ryland, DH, Kriete, M. Drug treatment of canine acral lick: an animal model of obsessive-compulsive disorder. Arch Gen Psychiatry. 1992; 49(7): 517521.
101. Garner, JP, Weisker, SM, Dufour, B, Mench, JA. Barbering (fur and whisker trimming) by laboratory mice as a model of human trichotillomania and obsessive-compulsive spectrum disorders. Comp Med. 2004; 54(2): 216224.
102. Garner, JP, Dufour, B, Gregg, LE, Weisker, SM, Mench, JA. Social and husbandry factors affecting the prevalence and severity of barbering (‘whisker trimming’) by laboratory mice. Applied Animal Behaviour Science. 2004; 89: 263282.
103. Vermeire, S, Audenaert, K, De Meester, R, etal. Serotonin 2A receptor, serotonin transporter and dopamine transporter alterations in dogs with compulsive behaviour as a promising model for human obsessive-compulsive disorder. Psychiatry Res. 2012; 201(1): 7887.
104. Powell, SB, Newman, HA, Pendergast, JF, Lewis, MH. A rodent model of spontaneous stereotypy: initial characterization of developmental, environmental, and neurobiological factors. Physiol Behav. 1999; 66: 355363.
105. Korff, S, Stein, DJ, Harvey, BH. Stereotypic behaviour in the deer mouse: pharmacological validation and relevance for obsessive compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32: 348355.
106. Bloch, MH, Landeros-Weisenberger, A, Kelmendi, B, etal. A systematic review: antipsychotic augmentation with treatment refractory obsessive-compulsive disorder. Mol Psychiatry. 2006; 11(7): 622632.
107. Presti, MF, Mikes, HM, Lewis, MH. Selective blockade of spontaneous motor stereotypy via intrastriatal pharmacological manipulation. Pharmacol Biochem Behav. 2003; 74(4): 833839.
108. Presti, MF, Lewis, MH. Striatal opioid peptide content in an animal model of spontaneous stereotypic behavior. Behav Brain Res. 2005; 157(2): 363368.
109. Korff, S, Stein, DJ, Harvey, BH. Cortico-striatal cyclic AMP-phosphodiesterase-4 signalling and stereotypy in the deer mouse: attenuation after chronic fluoxetine treatment. Pharmacol Biochem Behav. 2009; 92(3): 514520.
110. Guldenpfennig, M, Wolmarans de, W, du Preez, JL, Stein, DJ, Harvey, BH. Cortico-striatal oxidative status, dopamine turnover and relation with stereotypy in the deer mouse. Physiol Behav. 2011; 103(3–4): 404411.
111. Lynch, CB. Response to divergent selection for nesting behavior in Mus musculus. Genetics. 1980; 96: 757765.
112. Greene-Schloesser, DM, Van der Zee, EA, Sheppard, DK, etal. Predictive validity of a non-induced mouse model of compulsive-like behavior. Behav Brain Res. 2011; 221(1): 5562.
113. Hoffman, KL, Rueda Morales, RI. Toward an understanding of the neurobiology of “just right” perceptions: nest building in the female rabbit as a possible model for compulsive behavior and the perception of task completion. Behav Brain Res. 2009; 204: 182191.
114. Hoffman, KL, Rueda Morales, RI. D1 and D2 dopamine receptor antagonists decrease behavioral bout duration, without altering the bout's repeated behavioral components, in a naturalistic model of repetitive and compulsive behavior. Behav Brain Res. 2012; 230: 110.
115. Woods, A, Smith, C, Szewczak, M, etal. Selective serotonin re-uptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacology. 1993; 112(2–3): 195198.
116. Altemus, M, Glowa, JR, Galliven, E, Leong, YM, Murphy, DL. Effects of serotonergic agents on food-restriction-induced hyperactivity. Pharmacol Biochem Behav. 1996; 53(1): 123131.
117. Njung'e, K, Handley, SL. Evaluation of marble-burying behavior as a model of anxiety. Pharmacol Biochem BehavJan 1991; 38(1): 6367.
118. Holland, HC. Displacement activity as a form of abnormal behavior in animals. In: Beech HR, ed. Obsessional States. London: Methuen; 1974: 61173.
119. Pitman, RK. Animal models of compulsive behavior. Biol Psychiatry. 1989; 26(2): 189198.
120. Robbins, TW, Koob, GF. Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature. 1980; 285(5764): 409412.
121. van Kuyck, K, Brak, K, Das, J, Rizopoulos, D, Nuttin, B. Comparative study of the effects of electrical stimulation in the nucleus accumbens, the mediodorsal thalamic nucleus and the bed nucleus of the stria terminalis in rats with schedule-induced polydipsia. Brain Res. 2008; 1201: 9399.
122. Huff, W, Lenartz, D, Schormann, M, etal. Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: outcomes after one year. Clin Neurol Neurosurg. 2010; 112(2): 137143.
123. Rachman, S, Hodgson, R. Obsessions and Compulsions. New York: Prentice Hall; 1980.
124. Rasmussen, SA, Eisen, JL. The epidemiology and clinical features of obsessive compulsive disorder. Psychiatr Clin North Am. 1992; 15(4): 743758.
125. Milad, MR, Rauch, SL. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci. 2012; 16(1): 4351.
126. Franklin, ME, Foa, EB. Treatment of obsessive compulsive disorder. Ann Rev Clin Psychol. 2011; 7: 229243.
127. Brunet, A, Ashbaugh, AR, Saumier, D, etal. Does reconsolidation occur in humans: a reply. Front Behav Neurosc. 2011; 5: 74.
128. Ganasen, KA, Ipser, JC, Stein, DJ. Augmentation of cognitive behavioral therapy with pharmacotherapy. Psychiatr Clin North Am. 2010; 33(3): 687699.
129. Rodriguez-Romaguera, J, Do Monte, FH, Quirk, GJ. Deep brain stimulation of the ventral striatum enhances extinction of conditioned fear. Proc Natl Acad Sci U S A. 2012; 109(22): 87648769.
130. Joel, D, Avisar, A. Excessive lever pressing following post-training signal attenuation in rats: a possible animal model of obsessive compulsive disorder? Behav Brain Res. 2001; 123(1): 7787.
131. Joel, D. The signal attenuation rat model of obsessive-compulsive disorder: a review. Psychopharmacology. 2006; 186(4): 487503.
132. Albelda, N, Joel, D. Current animal models of obsessive compulsive disorder: an update. Neuroscience. 2012; 211: 83106.
133. Albelda, N, Joel, D. Animal models of obsessive-compulsive disorder: exploring pharmacology and neural substrates. Neurosci Biobehav Rev. 2012; 36(1): 4763.
134. Joel, D, Ben-Amir, E, Doljansky, J, Flaisher, S. ‘Compulsive’ lever-pressing in rats is attenuated by the serotonin re-uptake inhibitors paroxetine and fluvoxamine but not by the tricyclic antidepressant desipramine or the anxiolytic diazepam. Behav Pharmacol. 2004; 15(3): 241252.
135. Butter, CM, Mishkin, M, Rosvold, HE. Conditioning and extinction of a food-rewarded response after selective ablations of frontal cortex in rhesus monkeys. Exp Neurol. 1963; 7: 6575.
136. Kolb, B, Nonneman, AJ, Singh, RK. Double dissociation of spatial impairments and perseveration following selective prefrontal lesions in rats. J Comp Physiol Psychol. 1974; 87(4): 772780.
137. Nonneman, AJ, Voigt, J, Kolb, BE. Comparisons of behavioral effects of hippocampal and prefrontal cortex lesions in the rat. J Comp Physiol Psychol. 1974; 87(2): 249260.
138. Izquierdo, A, Murray, EA. Opposing effects of amygdala and orbital prefrontal cortex lesions on the extinction of instrumental responding in macaque monkeys. Eur J Neurosci. 2005; 22(9): 23412346.
139. Bouton, ME. Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol Psychiatry. 2002; 52(10): 976986.
140. Chudasama, Y, Passetti, F, Rhodes, SE, etal. Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res. 2003; 146(1–2): 105119.
141. Rogers, RD, Baunez, C, Everitt, BJ, Robbins, TW. Lesions of the medial and lateral striatum in the rat produce differential deficits in attentional performance. Behav Neurosci. 2001; 115: 799811.
142. Baunez, C, Robbins, TW. Effects of transient inactivation of the subthalamic nucleus by local muscimol and APV infusions on performance on the five-choice serial reaction time task in rats. Psychopharmacology. 1999; 141(1): 5765.
143. Boulougouris, V, Dalley, JW, Robbins, TW. Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res. 2007; 179(2): 219228.
144. Clarke, HF, Robbins, TW, Roberts, AC. Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J Neurosci. 2008; 28(43): 1097210982.
145. Castane, A, Theobald, DE, Robbins, TW. Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav Brain Res. 2010; 210(1): 7483.
146. Clarke, HF, Walker, SC, Dalley, JW, Robbins, TW, Roberts, AC. Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb Cortex. 2007; 17(1): 1827.
147. Boulougouris, V, Castane, A, Robbins, TW. Dopamine D2/D3 receptor agonist quinpirole impairs spatial reversal learning in rats: investigation of D3 receptor involvement in persistent behavior. Psychopharmacology. 2009; 202(4): 611620.
148. Birrell, JM, Brown, VJ. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci. 2000; 20(11): 43204324.
149. Kehagia, AA, Murray, GK, Robbins, TW. Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation. Curr Opin Neurobiol. 2010; 20(2): 199204.
150. Veale, DM, Sahakian, BJ, Owen, AM, Marks, IM. Specific cognitive deficits in tests sensitive to frontal lobe dysfunction in obsessive-compulsive disorder. Psychol Med. 1996; 26(6): 12611269.
151. Watkins, LH, Sahakian, BJ, Robertson, MM, etal. Executive function in Tourette's syndrome and obsessive-compulsive disorder. Psychol Med. 2005; 35(4): 571582.
152. Chamberlain, SR, Fineberg, NA, Menzies, LA, etal. Impaired cognitive flexibility and motor inhibition in unaffected first-degree relatives of patients with obsessive-compulsive disorder. Am J Psychiatry. 2007; 164(2): 335338.
153. Chamberlain, SR, Fineberg, NA, Blackwell, AD, Robbins, TW, Sahakian, BJ. Motor inhibition and cognitive flexibility in obsessive-compulsive disorder and trichotillomania. Am J Psychiatry. 2006; 163(7): 12821284.
154. Odlaug, BL, Chamberlain, SR, Grant, JE. Motor inhibition and cognitive flexibility in pathologic skin picking. Prog Neuropsychopharmacol Biol Psychiatry. 2010; 34(1): 208211.
155. Chamberlain, SR, Robbins, TW. Noradrenergic modulation of cognition: therapeutic implications. J Psychopharmacol. 2013; 27(8): 694718.
156. Dias, R, Robbins, TW, Roberts, AC. Dissociation in prefrontal cortex of affective and attentional shifts. Nature. 1996; 380(6569): 6972.
157. Brown, VJ, Bowman, EM. Rodent models of prefrontal cortical function. Trends Neurosci. 2002; 25(7): 340343.
158. Hampshire, A, Owen, AM. Fractionating attentional control using event-related fMRI. Cereb Cortex. 2006; 16(12): 16791689.
159. Menzies, L, Chamberlain, SR, Laird, AR, etal. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev. 2008; 32(3): 525549.
160. Clarke, HF, Walker, SC, Crofts, HS, etal. Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J Neurosci. 2005; 25(2): 532538.
161. Chamberlain, SR, Muller, U, Blackwell, AD, etal. Neurochemical modulation of response inhibition and probabilistic learning in humans. Science. 2006; 311(5762): 861863.
162. Tait, DS, Brown, VJ, Farovik, A, etal. Lesions of the dorsal noradrenergic bundle impair attentional set-shifting in the rat. Eur J Neurosci. 2007; 25(12): 37193724.
163. Lapiz, MDS, Bondi, CO, Morilak, DA. Chronic treatment with desipramine improves cognitive performance of rats in an attentional set-shifting test. Neuropsychopharmacology. 2007; 32: 10001010.
164. Zohar, J, Insel, TR. Obsessive-compulsive disorder: psychobiological approaches to diagnosis, treatment, and pathophysiology. Biol Psychiatry. 1987; 22(6): 667687.
165. Robbins, TW, Roberts, AC. Differential regulation of fronto-executive function by the monoamines and acetylcholine. Cereb Cortex. 2007; 17(suppl 1): 151160.
166. Tunbridge, EM, Bannerman, DM, Sharp, T, Harrison, PJ. Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J Neurosci. 2004; 24(23): 53315335.
167. Aron, AR, Durston, S, Eagle, DM, etal. Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci. 2007; 27(44): 1186011864.
168. Mallet, L, Polosan, M, Jaafari, N, etal. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med. 2008; 359(20): 21212134.
169. Klavir, O, Flash, S, Winter, C, Joel, D. High frequency stimulation and pharmacological inactivation of the subthalamic nucleus reduces ‘compulsive’ lever-pressing in rats. Exp Neurol. 2009; 215(1): 101109.
170. Eagle, DM, Baunez, C, Hutcheson, DM, etal. Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. Cereb Cortex. 2008; 18(1): 178188.
171. Eagle, DM, Robbins, TW. Lesions of the medial prefrontal cortex or nucleus accumbens core do not impair inhibitory control in rats performing a stop-signal reaction time task. Behav Brain Res. 2003; 146(1–2): 131144.
172. Eagle, DM, Robbins, TW. Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. Behav Neurosci. 2003; 117(6): 13021317.
173. Grant, JE, Odlaug, BL, Chamberlain, SR. Neurocognitive response to deep brain stimulation for obsessive-compulsive disorder: a case report. Am J Psychiatry. 2011; 168(12): 13381339.
174. Chamberlain, SR, Fineberg, NA, Blackwell, AD, etal. A neuropsychological comparison of obsessive-compulsive disorder and trichotillomania. Neuropsychologia. 2007; 45(4): 654662.
175. Chamberlain, SR, Sahakian, BJ. The neuropsychiatry of impulsivity. Curr Opin Psychiatry. 2007; 20(3): 255261.
176. Eagle, DM, Bari, A, Robbins, TW. The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology. 2008; 199(3): 439456.
177. Bari, A, Eagle, DM, Mar, AC, Robinson, ES, Robbins, TW. Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology. 2009; 205(2): 273283.
178. Dickinson, A. Actions and habits: the development of behavioural autonomy. Philos Trans R Soc Lond. 1985; 308: 6778.
179. Balleine, BW. Sensation, incentive learning, and the motivational control of goal-directed action. In: Gottfried JA, ed. Neurobiology of Sensation and Reward. Boca Raton, FL, 2011; 287310.
180. Balleine, BW, O'Doherty, JP. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology. 2010; 35(1): 4869.
181. Corbit, LH, Balleine, BW. The role of prelimbic cortex in instrumental conditioning. Behav Brain Res. 2003; 146(1–2): 145157.
182. Tricomi, E, Balleine, BW, O'Doherty, JP. A specific role for posterior dorsolateral striatum in human habit learning. Eur J Neurosci. 2009; 29(11): 22252232.
183. Balleine, BW, Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology. 1998; 37(4–5): 407419.
184. Yin, HH, Ostlund, SB, Knowlton, BJ, Balleine, BW. The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci. 2005; 22(2): 513523.
185. Valentin, VV, Dickinson, A, O'Doherty, JP. Determining the neural substrates of goal-directed learning in the human brain. J Neurosci. 2007; 27(15): 40194026.
186. Tanaka, SC, Balleine, BW, O'Doherty, JP. Calculating consequences: brain systems that encode the causal effects of actions. J Neurosci. 2008; 28(26): 67506755.
187. Haber, SN, Kim, KS, Mailly, P, Calzavara, R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci. 2006; 26(32): 83688376.
188. Ongur, D, Price, JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000; 10(3): 206219.
189. Yin, HH, Knowlton, BJ. The role of the basal ganglia in habit formation. Nat Rev Neurosci. 2006; 7(6): 464476.
190. Gillan, CM, Papmeyer, M, Morein-Zamir, S, etal. Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. Am J Psychiatry. 2011; 168(7): 718726.
191. Gillan, CM, Morein-Zamir, S, Urcelay, GP, etal. Enhanced avoidance habits in obsessive-compulsive disorder. Biol Psychiatry. In press. DOI: 10.1016/j.biopsych.2013.02.002.
192. Gottesman, II, Gould, TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003; 160(4): 636645.
193. Chamberlain, SR, Menzies, L. Endophenotypes of obsessive-compulsive disorder: rationale, evidence and future potential. Expert Rev Neurother. 2009; 9(8): 11331146.
194. Menzies, L, Achard, S, Chamberlain, SR, etal. Neurocognitive endophenotypes of obsessive-compulsive disorder. Brain. 2007; 130(Pt 12): 32233236.
195. Chen, SK, Tvrdik, P, Peden, E, etal. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell. 2010; 141(5): 775785.
196. Ichimaru, Y, Egawa, T, Sawa, A. 5-HT1A-receptor subtype mediates the effect of fluvoxamine, a selective serotonin reuptake inhibitor, on marble-burying behavior in mice. Jpn J Pharmacol. 1995; 68(1): 6570.
197. Broekkamp, CL, Rijk, HW, Joly-Gelouin, D, Lloyd, KL. Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. Eur J Pharmacol. 1986; 126(3): 223229.
198. Boulougouris, V, Robbins, TW. Enhancement of spatial reversal learning by 5-HT2C receptor antagonism is neuroanatomically specific. J Neurosci. 2010; 30(3): 930938.
199. Nikiforuk, A. Selective blockade of 5-HT7 receptors facilitates attentional set-shifting in stressed and control rats. Behav Brain Res. 2012; 226(1): 118123.
200. Cain, RE, Wasserman, MC, Waterhouse, BD, McGaughy, JA. Atomoxetine facilitates attentional set shifting in adolescent rats. Dev Cogn Neurosci. 2011; 1(4): 552559.
201. Bari, A, Mar, AC, Theobald, DE, etal. Prefrontal and monoaminergic contributions to stop-signal task performance in rats. J Neurosci. 2011; 31(25): 92549263.
202. Chamberlain, SR, Müller, U, Blackwell, AD, etal. Neurochemical modulation of response inhibition and probabilistic learning in humans. Science. 2006; 311(5762): 861863.
203. Chamberlain, SR, Hampshire, A, Muller, U, etal. Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry. 2009; 65(7): 550555.
204. Gillan, CM, Morein-Zamir, S, Kaser, M, etal. Counterfactual processing of economic action-outcome alternatives in obsessive-compulsive disorder: further evidence of impaired goal-directed behavior. Biol Psychiatry. In press. DOI: 10.1016/j.biopsych.2013.01.018.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

CNS Spectrums
  • ISSN: 1092-8529
  • EISSN: 2165-6509
  • URL: /core/journals/cns-spectrums
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed