Skip to main content

Brain alterations potentially associated with aggression and terrorism

  • Bernhard Bogerts (a1), Maria Schöne (a1) and Stephanie Breitschuh (a1)

A large proportion of the persons who join terrorist groups as well as lone-acting terrorists have a history of violent behavior or mental disorder that predated their becoming terrorists. This suggests that brain alterations found to occur in violent perpetrators may also be present in a significant percentage of terrorists. After a short delineation of phylogenetically old neuronal networks that are important for the generation of aggressive behavior in inconspicuous brains, this review summarizes structural and functional brain-imaging studies in violent offenders published over the last 10 years. Depending on the subtype of violence (impulsive or instrumental), deviations in structure or function were mainly found in the prefrontal, orbitofrontal, and insular cortex, as well as in temporolimbic structures (e.g., the amygdala, hippocampus, and parahippocampus). These brain areas are essentially responsible for the control of the archaic neuronal generators of aggression located in the hypothalamus and limbic system. This regional distribution of brain alterations also shows a remarkable overlap with those brain regions that are crucial for such prosocial traits as empathy and compassion. Feelings of superiority, dominance, and satisfaction gained by performing violent and terroristic attacks suggest that a hedonistic component via an activation of brain reward systems plays an additional role. In our current debate about the causes of terrorism, aspects of brain dysfunction should receive more attention.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Brain alterations potentially associated with aggression and terrorism
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Brain alterations potentially associated with aggression and terrorism
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Brain alterations potentially associated with aggression and terrorism
      Available formats
Corresponding author
*Address correspondence to: Bernhard Bogerts, Salus-Institut, Salus gGmbH, Seepark 5, 39116 Magdeburg Germany. (Email:
Hide All
1. Bogerts, B. Gehirn und Verbrechen: Neurobiologie von Gewalttaten. In: Schneider F, ed. Entwicklungen der Psychiatrie. Berlin, Heidelberg: Springer; 2006: 335347.
2. Report to the Governor, Medical Aspects, Charles J. Whitman Catastrophe. Austin: The Whitman Archives; 1966. Accessed July 6, 2017.
3. Eagleman, D. The brain on trial. Atl Mon. July/August 2011. Accessed July 6, 2017.
4. MacLean, PD. Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol. 1952; 4(4): 407418.
5. Hess, WR. Das Zwischenhirn: Syndrome, Lokalisationen, Funktionen. Basel: Schwabe; 1949.
6. Wasman, M, Flynn, JP. Directed attack elicited from the hypothalamus. Arch Neurol. 1962; 6: 220227.
7. Ploog, D. Biologische Grundlagen aggressiven Verhaltens: Psychiatrische und ethologische Aspekte abnormen Verhaltens [in German]. In: Kranz H, Heinrich K, eds. Erste Düsseldorfer Symposium. Stuttgart: Thieme; 1974: 4977.
8. Bogerts, B, Möller-Leimkühler, AM. Neurobiologische Ursachen und psychosoziale Bedingungen individueller Gewalt [Neurobiological and psychosocial causes of individual male violence] [in German]. Nervenarzt. 2013; 84(11): 13291344.
9. Mark, VH, Erwin, FR. Violence and the Brain. New York: Harper & Row; 1970.
10. Klüver, H, Bucy, PC. “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkeys. Am J Physiol. 1937; 119: 352353.
11. Bogerts, B. The temporolimbic system theory of positive schizophrenic symptoms. Schizophr Bull. 1997; 23(3): 423436.
12. Bogerts, B. The neuropathology of schizophrenic diseases: historical aspects and present knowledge. Eur Arch Psychiatry Clin Neurosci. 1999; 249(Suppl 4): 213.
13. Fazel, S, Gulati, G, Linsell, L, Geddes, JR, Grann, M. Schizophrenia and violence: systematic review and meta-analysis. PLoS Med. 2009; 6(8): e1000120. Accessed July 6, 2017.
14. Gómez, JM, Verdú, M, González-Megías, A, Méndez, M. The phylogenetic roots of human lethal violence. Nature. 2016; 538(7624): 233237.
15. Choi, JK, Bowles, S. The coevolution of parochial altruism and war. Science. 2007; 318(5850): 636640.
16. Jung, H, Herrenkohl, TI, Lee, JO, Klika, JB, Skinner, ML. Effects of physical and emotional child abuse and its chronicity on crime into adulthood. Violence Vict. 2015; 30(6): 10041018.
17. DiLalla, DL, Carey, G, Gottesman, II, Bouchard, TJ Jr. Heritability of MMPI personality indicators of psychopathology in twins reared apart. J Abnorm Psychol. 1996; 105(4): 491499.
18. Joyal, CC, Putkonen, A, Mancini-Marïe, A, et al. Violent persons with schizophrenia and comorbid disorders: a functional magnetic resonance imaging study. Schizophr Res. 2007; 91(1–3): 97102.
19. Rhee, SH, Waldman, ID. Genetic and environmental influences on antisocial behavior: a meta-analysis of twin and adoption studies. Psychol Bull. 2002; 128(3): 490529.
20. Alia-Klein, N, Goldstein, RZ, Kriplani, A, et al. Brain monoamine oxidase A activity predicts trait aggression. J Neurosci. 2008; 28(19): 50995104.
21. Buckholtz, JW, Meyer-Lindenberg, A. MAOA and the neurogenetic architecture of human aggression. Trends Neurosci. 2008; 31(3): 120129.
22. Caspi, A, Moffitt, TE. Gene–environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci. 2006; 7(7): 583590.
23. Rosell, DR, Siever, LJ. The neurobiology of aggression and violence. CNS Spectr. 2015; 20(3): 254279.
24. Browning, CR. Ordinary Men: Reserve Police Battalion 101 and the Final Solution in Poland. New York: HarperCollins and Aaron Asher Books; 1992.
25. Haney, C, Banks, C, Zimbardo, P. Interpersonal dynamics in a simulated prison. Int J Criminology Penol. 1973; 1: 6997; Accessed July 6, 2017.
26. Milgram, S. Behavioral study of obedience. J Abnorm Psychol. 1963; 67(4): 371378.
27. Milgram, S. Obedience to Authority: An Experimental View. New York: Harper; 1974.
28. Zimbardo, P. The Lucifer Effect: Understanding How Good People Turn Evil. Random House Reprints; 2008.
29. Möller-Leimkühler, AM, Bogerts, B. Kollektive Gewalt [Collective violence: neurobiological, psychosocial and sociological condition] [in German]. Nervenarzt. 2013; 84(11): 13451358.
30. Bundesamt für Verfassungsschutz. Analyse der den deutschen Sicherheitsbehörden vorliegenden Informationen über die Radikalisierungshintergründe und -verläufe der Personen, die aus islamistischer Motivation aus Deutschland in Richtung Syrien ausgereist sind—so lautet der Titel [in German]; Ständige Konferenz der Innenminister und senatoren der Linder; 2016. Accessed July 6, 2017.
31. Pantucci, R, Ellis, C, Chaplais, L. Lone-Actor Terrorism: Literature Review. London: Royal United Service Institute; 2015.
32. Bufkin, JL, Luttrell, VR. Neuroimaging studies of aggressive and violent behavior: current findings and implications for criminology and criminal justice. Trauma, Violence Abuse. 2005; 6(2): 176191.
33. Raine, A, Yang, Y. Neural foundations to moral reasoning and antisocial behavior. Soc Cogn Affect Neurosci. 2006; 1(3): 203213.
34. Weber, S, Habel, U, Amunts, K, Schneider, F. Structural brain abnormalities in psychopaths: a review. Behav Sci Law. 2008; 26(1): 728.
35. Schiltz, K, Witzel, JG, Bausch-Hölterhoff, J, Bogerts, B. High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study. Eur Arch Psychiatry Clin Neurosci. 2013; 263(7): 607616.
36. Floden, D. Frontal lobe function. In: Parsons MW, Hammeke TA, Snyder PJ, eds. Clinical Neuropsychology: A Pocket Handbook for Assessment. Washington, DC: American Psychological Association; 2014: 498524.
37. Olson, IR, Plotzker, A, Ezzyat, Y. The enigmatic temporal pole: a review of findings on social and emotional processing. Brain. 2007; 130(7): 17181731.
38. Rudebeck, PH, Bannerman, DM, Rushworth, MF. The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making. Cogn Affect Behav Neurosci. 2008; 8(4): 485497.
39. Stuss, DT. Functions of the frontal lobes: relation to executive functions. J Int Neuropsychol Soc. 2011; 17(5): 759765.
40. Brower, MC, Price, BH. Neuropsychiatry of frontal lobe dysfunction in violent and criminal behaviour: a critical review. J Neurol Neurosurg Psychiatry. 2001; 71(6): 720726.
41. Müller, JL, Gänßbauer, S, Sommer, M, et al. Gray matter changes in right superior temporal gyrus in criminal psychopaths: evidence from voxel-based morphometry. Psychiatry Res. 2008; 163(3): 213222.
42. Gregory, S. The antisocial brain: psychopathy matters. Arch Gen Psychiatry. 2012; 69(9): 962972.
43. Leutgeb, V, Leitner, M, Wabnegger, A, et al. Brain abnormalities in high-risk violent offenders and their association with psychopathic traits and criminal recidivism. Neuroscience. 2015; 308: 194201.
44. Domenech, P, Koechlin, E. Executive control and decision-making in the prefrontal cortex. Curr Opin Behav Sci. 2015; 1: 101106.
45. Bertsch, K, Grothe, M, Prehn, K, et al. Brain volumes differ between diagnostic groups of violent criminal offenders. Eur Arch Psychiatry Clin Neurosci. 2013; 263(7): 593606.
46. Davidson, RJ. Dysfunction in the neural circuitry of emotion regulation: a possible prelude to violence. Science. 2000; 289(5479): 591594.
47. Kringelbach, ML, Rolls, ET. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol. 2004; 72(5): 341372.
48. Rudebeck, PH, Murray, EA. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron. 2014; 84(6): 11431156.
49. Schoenbaum, G, Roesch, MR, Stalnaker, TA. Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci. 2006; 29(2): 116124.
50. Birbaumer, N, Veit, R, Lotze, M, et al. Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Arch Gen Psychiatry. 2005; 62(7): 799805.
51. Yang, Y, Raine, A, Colletti, P, Toga, AW, Narr, KL. Morphological alterations in the prefrontal cortex and the amygdala in unsuccessful psychopaths. J Abnorm Psychol. 2010; 119(3): 546554.
52. Kumari, V, Barkataki, I, Goswami, S, Flora, S, Das, M, Taylor, P. Dysfunctional, but not functional, impulsivity is associated with a history of seriously violent behaviour and reduced orbitofrontal and hippocampal volumes in schizophrenia. Psychiatry Res. 2009; 173(1): 3944.
53. Tiihonen, J, Rossi, R, Laakso, MP, et al. Brain anatomy of persistent violent offenders: more rather than less. Psychiatry Res. 2008; 163(3): 201212.
54. Ermer, E, Cope, LM, Calhoun, VD, Nyalakanti, PK, Kiehl, KA. Aberrant paralimbic gray matter in criminal psychopathy. J Abnorm Psychol. 2012; 121(3): 649658.
55. Boccardi, M, Frisoni, GB, Hare, RD, et al. Cortex and amygdala morphology in psychopathy. Psychiatry Res. 2011; 193(2): 8592.
56. Cope, LM, Shane, MS, Segall, JM, et al. Examining the effect of psychopathic traits on gray matter volume in a community substance abuse sample. Psychiatry Res. 2012; 204(2–3): 91100.
57. Ly, M, Motzkin, JC, Philippi, CL, et al. Cortical thinning in psychopathy. Am J Psychiatry. 2012; 169(7): 743749.
58. Buckner, RL, Andrews-Hanna, JR, Schacter, DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008; 1124: 138.
59. Hahn, B, Ross, TJ, Stein, EA. Cingulate activation increases dynamically with response speed under stimulus unpredictability. Cereb Cortex. 2007; 17(7): 16641671.
60. Leech, R, Sharp, DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014; 137(1): 1232.
61. Yamasaki, S, Yamasue, H, Abe, O, et al. Reduced gray matter volume of pars opercularis is associated with impaired social communication in high-functioning autism spectrum disorders. Biol Psychiatry. 2010; 68(12): 11411147.
62. Bannon, SM, Salis, KL, O’Leary, DK. Structural brain abnormalities in aggression and violent behavior. Aggress Violent Behav. 2015; 25(Pt B): 323331.
63. Kiehl, KA. A cognitive neuroscience perspective on psychopathy: evidence for paralimbic system dysfunction. Psychiatry Res. 2006; 142(2–3): 107128.
64. Miller, BL, Darby, A, Benson, DF, Cummings, JL, Miller, MH. Aggressive, socially disruptive and antisocial behaviour associated with fronto-temporal dementia. Br J Psychiatry. 1997; 170(2): 150154.
65. Woermann, FG, van Elst, LT, Koepp, MJ, et al. Reduction of frontal neocortical grey matter associated with an affective aggression in patients with temporal lobe epilepsy: an objective voxel-by-voxel analysis of automatically segmented MRI. J Neurol Neurosurg Psychiatry. 2000; 68: 162169.
66. Howner, K, Eskildsen, SF, Fischer, H, et al. Thinner cortex in the frontal lobes in mentally disordered offenders. Psychiatry Res. 2012; 203(2–3): 126131.
67. Cope, LM, Ermer, E, Gaudet, LM, et al. Abnormal brain structure in youth who commit homicide. Neuroimage Clin. 2014; 4: 800807.
68. Yang, Y, Raine, A, Han, CB, Schug, RA, Toga, AW, Narr, KL. Reduced hippocampal and parahippocampal volumes in murderers with schizophrenia. Psychiatry Res. 2010; 182(1): 913.
69. Puri, BK, Counsell, SJ, Saeed, N, Bustos, MG, Treasaden, IH, Bydder, GM. Regional grey matter volumetric changes in forensic schizophrenia patients: an MRI study comparing the brain structure of patients who have seriously and violently offended with that of patients who have not. BMC Psychiatry. 2008; 8(Suppl 1): S6.
70. Hare, RD. The Hare Psychopathy Checklist–Revised (PCL–R). Toronto: Multi-Health Systems; 1991.
71. Boccardi, M, Ganzola, R, Rossi, R, et al. Abnormal hippocampal shape in offenders with psychopathy. Hum Brain Mapp. 2010; 31(3): 438447.
72. Eres, R, Decety, J, Louis, WR, Molenberghs, P. Individual differences in local gray matter density are associated with differences in affective and cognitive empathy. Neuroimage. 2015; 117: 305310.
73. Schiffer, B, Mueller, BW, Scherbaum, N, et al. Disentangling structural brain alterations associated with violent behavior from those associated with substance use disorders. Arch Gen Psychiatry. 2011; 68(10): 10391049.
74. Siever, LJ. Neurobiology of aggression and violence. Am J Psychiatry. 2008; 165(4): 429442.
75. Price, JL. Amygdala. In: Squire LR, ed. New Encyclopedia of Neuroscience. New York: Academic Press; 2008: 14.
76. Sah, P, Faber, ES, Lopez De Armentia, M, Power, J. The amygdaloid complex: anatomy and physiology. Physiol Rev. 2003; 83(3): 803834.
77. Blair, RJ. The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends Cogn Sci. 2007; 11(9): 387392.
78. Phelps, EA. Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol. 2004; 14(2): 198202.
79. Phillips, RG, LeDoux, JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992; 106(2): 274285.
80. Pardini, DA, Raine, A, Erickson, K, Loeber, R. Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biol Psychiatry. 2014; 75(1): 7380.
81. Del Bene, VA, Foxe, JJ, Ross, LA, Krakowski, MI, Czobor, P, De Sanctis, P. Neuroanatomical abnormalities in violent individuals with and without a diagnosis of schizophrenia. PLoS One. 2016; 11(12): e0168100. Accessed July 6, 2017.
82. Motzkin, JC, Newman, JP, Kiehl, KA, Koenigs, M. Reduced prefrontal connectivity in psychopathy. J Neurosci. 2011; 31(48): 1734817357.
83. Craig, MC, Catani, M, Deeley, Q, et al. Altered connections on the road to psychopathy. Mol Psychiatry. 2009; 14(10): 946953; 907.
84. Leutgeb, V, Wabnegger, A, Leitner, M, et al. Altered cerebellar-amygdala connectivity in violent offenders: a resting-state fMRI study. Neurosci Lett. 2016; 610: 160164.
85. Harada, T, Itakura, S, Xu, F, et al. Neural correlates of the judgment of lying: a functional magnetic resonance imaging study. Neurosci Res. 2009; 63(1): 2434.
86. Lang, S, Yu, T, Markl, A, Müller, F, Kotchoubey, B. Hearing others’ pain: neural activity related to empathy. Cogn Affect Behav Neurosci. 2011; 11(3): 386395.
87. Schmahmann, JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004; 16(3): 367378.
88. Demirtas-Tatlidede, A, Schmahmann, JD. Morality: incomplete without the cerebellum? Brain. 2013; 136(8): 20072009.
89. Turner, BM, Paradiso, S, Marvel, CL, et al. The cerebellum and emotional experience. Neuropsychologia. 2007; 45(6): 13311341.
90. Picazio, S, Koch, G. Is motor inhibition mediated by cerebello-cortical interactions? Cerebellum. 2015; 14(1): 4749.
91. Glenn, AL, Raine, A, Yaralian, PS, Yang, Y. Increased volume of the striatum in psychopathic individuals. Biol Psychiatry. 2010; 67(1): 5258.
92. Decety, J, Skelly, LR, Kiehl, KA. Brain response to empathy-eliciting scenarios involving pain in incarcerated psychopaths. JAMA Psychiatry. 2013; 70(6): 638645.
93. Mier, D, Haddad, L, Diers, K, Dressing, H, Meyer-Lindenberg, A, Kirsch, P. Reduced embodied simulation in psychopathy. World J Biol Psychiatry. 2014; 15(6): 479487.
94. Vemuri, K, Surampudi, BR. Evidence of stimulus correlated empathy modes: group ICA of fMRI data. Brain Cogn. 2015; 94: 3243.
95. Yang, Y, Raine, A. Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res. 2009; 174(2): 8188.
96. Contreras-Rodriguez, O, Pujol, J, Batalla, I, et al. Functional connectivity bias in the prefrontal cortex of psychopaths. Biol Psychiatry. 2015; 78(9): 647655.
97. Lee, TM, Chan, SC, Raine, A. Strong limbic and weak frontal activation to aggressive stimuli in spouse abusers. Mol Psychiatry. 2008; 13(7): 655656.
98. Harenski, CL, Harenski, KA, Shane, MS, Kiehl, KA. Aberrant neural processing of moral violations in criminal psychopaths. J Abnorm Psychol. 2010; 119(4): 863874.
99. Decety, J, Chen, C, Harenski, C, Kiehl, KA. An fMRI study of affective perspective taking in individuals with psychopathy: imagining another in pain does not evoke empathy. Front Hum Neurosci. 2013; 7: 112.
100. Pujol, J, Batalla, I, Contreras-Rodríguez, O, et al. Breakdown in the brain network subserving moral judgment in criminal psychopathy. Soc Cogn Affect Neurossci. 2012; 7(8): 917923.
101. Meffert, H, Gazzola, V, den Boer, JA, Bartels, AA, Keysers, C. Reduced spontaneous but relatively normal deliberate vicarious representations in psychopathy. Brain. 2013; 136(8): 25502562.
102. Singer, T, Klimecki, OM. Empathy and compassion. Curr Biol. 2014; 24(18): R875R878.
103. Lee, TM, Chan, SC, Raine, A. Hyperresponsivity to threat stimuli in domestic violence offenders: a functional magnetic resonance imaging study. J Clin Psychiatry. 2008; 70(1): 3645.
104. Decety, J, Skelly, L, Yoder, KJ, Kiehl, KA. Neural processing of dynamic emotional facial expressions in psychopaths. Soc Neurosci. 2014; 9(1): 3649.
105. Prehn, K, Schulze, L, Rossmann, S, et al. Effects of emotional stimuli on working memory processes in male criminal offenders with borderline and antisocial personality disorder. World J Biol Psychiatry. 2013; 14(1): 7178.
106. Pujara, M, Motzkin, JC, Newman, JP, Kiehl, KA, Koenigs, M. Neural correlates of reward and loss sensitivity in psychopathy. Soc Cogn Affect Neurosci. 2014; 9(6): 794801.
107. Sommer, M, Sodian, B, Döhnel, K, Schwerdtner, J, Meinhardt, J, Hajak, G. In psychopathic patients emotion attribution modulates activity in outcome-related brain areas. Psychiatry Res. 2010; 182(2): 8895.
108. Dolan, MC, Fullam, RS. Psychopathy and functional magnetic resonance imaging blood oxygenation level-dependent responses to emotional faces in violent patients with schizophrenia. Biol Psychiatry. 2009; 66(6): 570577.
109. Kumari, V, Das, M, Taylor, PJ, et al. Neural and behavioural responses to threat in men with a history of serious violence and schizophrenia or antisocial personality disorder. Schizophr Res. 2009; 110(1–3): 4758.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

CNS Spectrums
  • ISSN: 1092-8529
  • EISSN: 2165-6509
  • URL: /core/journals/cns-spectrums
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 40
Total number of PDF views: 257 *
Loading metrics...

Abstract views

Total abstract views: 601 *
Loading metrics...

* Views captured on Cambridge Core between 14th August 2017 - 22nd July 2018. This data will be updated every 24 hours.