Skip to main content Accessibility help

Emotional distress, brain functioning, and biobehavioral processes in cancer patients: a neuroimaging review and future directions

  • Joaquim C. Reis (a1), Michael H. Antoni (a2) (a3) and Luzia Travado (a4)


Despite emerging evidence that distress and adversity can contribute to negative health outcomes in cancer, little is known about the brain networks, regions, or circuits that can contribute to individual differences in affect/distress states and health outcomes in treated cancer patients. To understand the state-of-the-science in this regard, we reviewed neuroimaging studies with cancer patients that examined the associations between negative affect (distress) and changes in the metabolism or structure of brain regions. Cancer patients showed changes in function and/or structure of key brain regions such as the prefrontal cortex, thalamus, amygdala, hippocampus, cingulate cortex (mainly subgenual area), hypothalamus, basal ganglia (striatum and caudate), and insula, which are associated with greater anxiety, depression, posttraumatic stress disorder (PTSD) symptoms, and distress. These results provide insights for understanding the effects of these psychological and emotional factors on peripheral stress-related biobehavioral pathways known to contribute to cancer progression and long-term health outcomes. This line of work provides leads for understanding the brain-mediated mechanisms that may explain the health effects of psychosocial interventions in cancer patients and survivors. A multilevel and integrated model for distress management intervention effects on psychological adaptation, biobehavioral processes, cancer pathogenesis, and clinical outcomes is proposed for future research.


Corresponding author

*Address correspondence to: Joaquim C. Reis 0000-0003-0737-0955, Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal. (Email:


Hide All

This work was supported by Fundação para a Ciência e Tecnologia in the framework of the project Distress and regional brain metabolism: a correlational study in metastatic breast cancer patients. PTDC/MHC-PSC/3897/2014, and through funding from the National Cancer Institute (CA064710, HHSN261200800001E), Florida Department of Health (6BC06), and the University of Miami Sylvester Comprehensive Cancer Center.



Hide All
1. Ganz, PA, Hahn, EE. Implementing a survivorship care plan for patients with breast cancer. J Clin Oncol. 2008;26(5):759767. doi: 10.1200/JCO.2007.14.2851.
2. Lehto, R, Therrien, B. Death concerns among individuals newly diagnosed with lung cancer. Death Stud. 2010;34(10):931946. doi: 10.1080/07481181003765477.
3. McFarland, DC, Shaffer, KM, Tiersten, A, et al. Physical symptom burden and its association with distress, anxiety, and depression in breast cancer. Psychosomatics. 2018;59(5):464471. doi: 10.1016/j.psym.2018.01.005.
4. Purnell, JQ, Andersen, BL. Religious practice and spirituality in the psychological adjustment of survivors of breast cancer. Couns Values. 2009;53(3):165182.
5. Jim, HS, Richardson, SA, Golden-Kreutz, DM, et al. Strategies used in coping with a cancer diagnosis predict meaning in life for survivors. Heal Psychol. 2006;25(6):753761. doi: 10.1037/0278-6133.25.6.753.
6. Antoni, MH. Psychosocial intervention effects on adaptation, disease course and biobehavioral processes in cancer. Brain Behav Immun. 2013;30(Suppl):S88S98. doi: 10.1016/j.bbi.2012.05.009.
7. Travado, L, Reis, JC. Breast cancer meanings: a cognitive-developmental study. Psychooncology. 2013;22(9):20162023. doi: 10.1002/pon.3246.
8. Kreitler, S, Peleg, D, Ehrenfeld, M. Stress, self-efficacy and quality of life in cancer patients. Psychooncology. 2007;16(4):329341. doi: 10.1002/pon.1063.
9. Bergerot, CD, Araujo, TC. Assessment of distress and quality of life of cancer patients over the course of chemotherapy. Invest Educ Enferm. 2014;32(2):216224. doi: 10.1590/S0120-53072014000200004.
10. Bauer, MR, Bright, EE, MacDonald, JJ, et al. Quality of life in patients with pancreatic cancer and their caregivers: a systematic review. Pancreas. 2018;47(4):368375. doi: 10.1097/MPA.0000000000001025.
11. Weitman, ES, Perez, M, Thompson, JF, et al. Quality of life patient-reported outcomes for locally advanced cutaneous melanoma. Melanoma Res. 2018;28(2):134142. doi: 10.1097/CMR.0000000000000425.
12. Montazeri, A. Health-related quality of life in breast cancer patients: a bibliographic review of the literature from 1974 to 2007. J Exp Clin Cancer Res. 2008;27(1):32. doi: 10.1186/1756-9966-27-32.
13. Howard-Anderson, J, Ganz, PA, Bower, JE, et al. Quality of life, fertility concerns, and behavioral health outcomes in younger breast cancer survivors: a systematic review. J Natl Cancer Inst. 2012;104(5):386405. doi: 10.1093/jnci/djr541.
14. Adler, NE, Page, AEK, eds. Cancer Care for the Whole Patient: Meeting Psychosocial Health Needs. Washington, DC: National Academies Press; 2008.
15. Zabora, J, Brintzenhofeszoc, K, Curbow, B, et al. The prevalence of psychological distress by cancer site. Psychooncology. 2001;10(1):1928. doi: 10.1002/1099-1611(200101/02)10:1<19::AID-PON501>3.0.CO;2-6.
16. Grassi, L, Travado, L, Gil, F, et al. Hopelessness and related variables among cancer patients in the Southern European Psycho-oncology Study (SEPOS). Psychosomatics. 2010;51(3):201207. doi: 10.1176/appi.psy.51.3.201.
17. Mitchell, AJ, Ferguson, DW, Gill, J, et al. Depression and anxiety in long-term cancer survivors compared with spouses and healthy controls: a systematic review and meta-analysis. Lancet Oncol. 2013;14(8):721732. doi: 10.1016/S1470-2045(13)70244-4.
18. Linden, W, Vodermaier, A, MacKenzie, R, et al. Anxiety and depression after cancer diagnosis: prevalence rates by cancer type, gender, and age. J Affect Disord. 2012;141(2–3):343351. doi: 10.1016/j.jad.2012.03.025.
19. Lutgendorf, SK, Sood, AK, Antoni, MH. Host factors and cancer progression: biobehavioral signaling pathways and interventions. J Clin Oncol. 2010;28(26):40944099. doi: 10.1200/JCO.2009.26.9357.
20. Lindquist, KA, Satpute, AB, Wager, TD, et al. The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature. Cereb Cortex. 2016;26(5):19101922. doi: 10.1093/cercor/bhv001.
21. Lindquist, KA, Wager, TD, Kober, H, et al. The brain basis of emotion: a meta-analytic review. Behav Brain Sci. 2012;35(3):121143. doi: 10.1017/S0140525X11000446.
22. Gianaros, PJ, Wager, TD. Brain-body pathways linking psychological stress and physical health. Curr Dir Psychol Sci. 2015;24(4):313321. doi: 10.1177/0963721415581476.
23. Peters, A, McEwen, BS, Friston, K. Uncertainty and stress: why it causes diseases and how it is mastered by the brain. Prog Neurobiol. 2017;156:164188. doi: 10.1016/j.pneurobio.2017.05.004.
24. Lazarus, RS, Folkman, S. Stress, Appraisal, and Coping. New York: Springer; 1984.
25. Mishel, MH. Reconceptualization of the uncertainty in illness theory. Image J Nurs Sch. 1990;22(4):256262. doi: 10.1111/j.1547-5069.1990.tb00225.x.
26. Christman, NJ. Uncertainty and adjustment during radiotherapy. Nurs Res. 1990;39(1):1747.
27. Mishel, MH, Sorenson, DS. Uncertainty in gynecological cancer: a test of the mediating functions of mastery and coping. Nurs Res. 1991;40(3):167171.
28. Wright, LJ, Afari, N, Zautra, A. The illness uncertainty concept: a review. Curr Pain Headache Rep. 2009;13(2):133138. doi: 10.1007/s11916-009-0023-z.
29. Karatsoreos, IN, McEwen, BS. Stress and brain function. In: Fink, G, Pfaff, DW, Levine, JE, eds. Handbook of Neuroendocrinology. San Diego: Academic Press; 2012: 497507. doi:
30. McEwen, BS. Allostasis and the epigenetics of brain and body health over the life course. JAMA Psychiatry. 2017;74(6):551552. doi: 10.1001/jamapsychiatry.2017.0270.
31. McEwen, BS, Nasca, C, Gray, JD. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology. 2016;41(1):323. doi: 10.1038/npp.2015.171.
32. Davidson, RJ, McEwen, BS. Social influences on neuroplasticity: stress and interventions to promote well-being. Nat Neurosci. 2012;15(5):689695. doi: 10.1038/nn.3093.
33. McEwen, BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87(3):873904. doi: 10.1152/physrev.00041.2006.
34. McEwen, BS, Gianaros, PJ. Stress- and allostasis-induced brain plasticity. Annu Rev Med. 2011;62(1):431445. doi: 10.1146/annurev-med-052209-100430.
35. Jahn, AL, Fox, AS, Abercrombie, HC, et al. Subgenual prefrontal cortex activity predicts individual differences in hypothalamic-pituitary-adrenal activity across different contexts. Biol Psychiatry. 2010;67(2):175181. doi: 10.1016/j.biopsych.2009.07.039.
36. Tashiro, M, Kubota, K, Itoh, M, et al. Hypometabolism in the limbic system of cancer patients observed by positron emission tomography. Psychooncology. 1999;8(4):283286. doi: 10.1002/(SICI)1099-1611(199907/08)8:4<283::AID-PON384>3.0.CO;2-A.
37. Davidson, RJ, Pizzagalli, D, Nitschke, JB, et al. Depression: perspectives from affective neuroscience. Annu Rev Psychol. 2002;53(1):545574. doi: 10.1146/annurev.psych.53.100901.135148.
38. Gotlib, IH, Hamilton, JP. Neuroimaging and depression. Curr Dir Psychol Sci. 2008;17(2):159163. doi: 10.1111/j.1467-8721.2008.00567.x.
39. Hamilton, JP, Etkin, A, Furman, DJ, et al. Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of baseline activation and neural response data. Am J Psychiatry. 2012;169(7):693703. doi: 10.1176/appi.ajp.2012.11071105.
40. McGrath, CL, Kelley, ME, Holtzheimer, PE, et al. Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry. 2013;70(8):821829. doi: 10.1001/jamapsychiatry.2013.143.
41. Sacher, J, Neumann, J, Fünfstück, T, et al. Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disord. 2012;140(2):142148. doi: 10.1016/j.jad.2011.08.001.
42. Drevets, W, Bogers, W, Raichle, M. Functional anatomical correlates of antidepressant drug treatment using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol. 2002;12(6):527544. doi: 10.1016/S0924-977X(02)00102-5.
43. Drevets, WC, Raichle, ME. Neuroanatomical circuits in depression: implications for treatment mechanisms. Psychopharmacol Bull. 1992;28(3):261274.
44. Gonul, AS, Kula, M, Bilgin, AG, et al. The regional cerebral blood flow changes in major depressive disorder with and without psychotic features. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(6):10151021. doi: 10.1016/j.pnpbp.2004.05.036.
45. Mayberg, HS, Lozano, AM, Voon, V, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651660. doi: 10.1016/j.neuron.2005.02.014.
46. Kegeles, LS, Malone, KM, Slifstein, M, et al. Response of cortical metabolic deficits to serotonergic challenge in familial mood disorders. Am J Psychiatry. 2003;160(1):7682. doi: 10.1176/appi.ajp.160.1.76.
47. Müller, VI, Cieslik, EC, Serbanescu, I, et al. Altered brain activity in unipolar depression revisited. JAMA Psychiatry. 2017;74(1):4755. doi: 10.1001/jamapsychiatry.2016.2783.
48. Palmer, SM, Crewther, SG, Carey, LM. A meta-analysis of changes in brain activity in clinical depression. Front Hum Neurosci. 2015;8:1045. doi: 10.3389/fnhum.2014.01045.
49. Sacher, J, Neumann, J, Fünfstück, T, Soliman, A, Villringer, A, Schroeter, ML. Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disord. 2012;140(2):142148. doi: 10.1016/j.jad.2011.08.001.
50. Fang, L, Yao, Z, An, J, et al. Topological organization of metabolic brain networks in pre-chemotherapy cancer with depression: a resting-State PET study. PLoS One. 2016;11(11):119. doi: 10.1371/journal.pone.0166049.
51. Tashiro, M, Itoh, M, Kubota, K, et al. Relationship between trait anxiety, brain activity and natural killer cell activity in cancer patients: a preliminary PET study. Psychooncology. 2001;10(6):541546. doi: 10.1002/pon.548[pii].
52. Tashiro, M, Juengling, FD, Reinhardt, MJ, et al. Depressive state and regional cerebral activity in cancer patients—a preliminary study. Med Sci Monit. 2001;7(4):687695.
53. Tashiro, M, Kubota, K, Itoh, M, et al. Regional cerebral glucose metabolism of patients with malignant diseases in different clinical phases. Med Sci Monit. 2001;7(2):226232.
54. Tashiro, M, Juengling, FD, Reinhardt, MJ, et al. Reproducibility of PET brain mapping of cancer patients. Psychooncology. 2000;9(2):157163. doi: 10.1002/(SICI)1099-1611(200003/04)9:2<157::AID-PON452>3.0.CO;2-Y.
55. Kumano, H, Ida, I, Oshima, A, et al. Brain metabolic changes associated with predispotion to onset of major depressive disorder and adjustment disorder in cancer patients—a preliminary PET study. J Psychiatr Res. 2007;41(7):591599. doi: 10.1016/j.jpsychires.2006.03.006.
56. Inagaki, M, Yoshikawa, E, Kobayakawa, M, et al. Regional cerebral glucose metabolism in patients with secondary depressive episodes after fatal pancreatic cancer diagnosis. J Affect Disord. 2007;99(1–3):231236. doi: 10.1016/j.jad.2006.08.019.
57. Zung, WWK. A self-rating depression scale. Arch Gen Psychiatry. 1965;12(1):6370. doi: 10.1001/archpsyc.1965.01720310065008.
58. Taylor, JA. A personality scale of manifest anxiety. J Abnorm Soc Psychol. 1953;48(2):285290. doi: 10.1037/h0056264.
59. Hamilton, M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23(1):5662. doi: 10.1136/jnnp.23.1.56.
60. Spielberger, C. Manual for the State-Trait Anxiety Inventory (STAI). Palo Alto, CA: Consulting Psychologists Press; 1983. doi: 10.1007/978-0-387-78665-0_6709.
61. Castelli, L, Tonello, D, D’Agata, F, et al. The neurobiological basis of the distress thermometer: a PET study in cancer patients. Stress Health. 2015;31(3):197203. doi: 10.1002/smi.2546.
62. National Comprehensive Cancer Network. NCCN Distress Thermometer and Problem List for Patients. Accessed August 20, 2018.
63. Zigmond, AS, Snaith, RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
64. Pessoa, L. Understanding brain networks and brain organization. Phys Life Rev. 2014;11(3):400435. doi: 10.1016/j.plrev.2014.03.005.
65. Kleckner, IR, Zhang, J, Touroutoglou, A, et al. Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat Hum Behav. 2017;1(5):0069. doi: 10.1038/s41562-017-0069.
66. Barrett, LF. How Emotions Are Made: The Secret Life of the Brain. Boston: Houghton Mifflin Harcourt; 2017.
67. Barrett, LF, Satpute, AB. Large scale brain networks in affective and social neuroscience—towards an integrative functional architecture of the brain. Curr Opin Neurobiol. 2013;23(3): 361372. doi: 10.1016/j.conb.2012.12.012.
68. Bullmore, E, Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186198. doi: 10.1038/nrn2575.
69. Sheline, YI, Price, JL, Yan, Z, et al. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci. 2010;107(24):1102011025. doi: 10.1073/pnas.1000446107.
70. Kaiser, RH, Andrews-Hanna, JR, Wager, TD, et al. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry. 2015;72(6):603611. doi: 10.1001/jamapsychiatry.2015.0071.
71. Beck, AT, Steer, RA. Internal consistencies of the original and revised Beck depression inventory. J Clin Psychol. 1984;40(6):13651367. doi: 10.1002/1097-4679(198411)40:6<1365::AID-JCLP2270400615>3.0.CO;2-D.
72. Nakano, T, Wenner, M, Inagaki, M, et al. Relationship between distressing cancer-related recollections and hippocampal volume in cancer survivors. Am J Psychiatry. 2002;159(12):20872093. doi: 10.1176/appi.ajp.159.12.2087.
73. Matsuoka, Y, Yamawaki, S, Inagaki, M, Akechi, T, Uchitomi, Y. A volumetric study of amygdala in cancer survivors with intrusive recollections. Biol Psychiatry. 2003;54(7):736743. doi: 10.1016/S0006-3223(02)01907-8.
74. Inagaki, M, Matsuoka, Y, Sugahara, Y, et al. Hippocampal volume and first major depressive episode after cancer diagnosis in breast cancer survivors. Am J Psychiatry. 2004;161(12):22632270. doi: 161/12/2263 [pii]\r10.1176/appi.ajp.161.12.2263.
75. Yoshikawa, E, Matsuoka, Y, Yamasue, H, et al. Prefrontal cortex and amygdala volume in first minor or major depressive episode after cancer diagnosis. Biol Psychiatry. 2006;59(8):707712. doi: 10.1016/j.biopsych.2005.08.018.
76. Tashiro, M, Itoh, M, Kubota, K, et al. Neuroimaging of cancer patients for psychosocial support and patient care. Curr Med Imaging Rev. 2008;4(1):1924. wos:000253959300005.
77. Barrett, LF, Simmons, WK. Interoceptive predictions in the brain. Nat Rev Neurosci. 2015;16(7):419429. doi: 10.1038/nrn3950.
78. Strigo, IA, Craig, AD. Interoception, homeostatic emotions and sympathovagal balance. Philos Trans R Soc London B Biol Sci. 2016;371(1708):19. doi: 10.1098/rstb.2016.0010.
79. Weingarten, CP, Strauman, TJ. Neuroimaging for psychotherapy research: current trends. Psychother Res. 2015;25(2):185213. doi: 10.1080/10503307.2014.883088.
80. Geuter, S, Lindquist, MA, Wager, TD. Fundamentals of functional neuroimaging. In: Cacioppo, J, Tassinary, LG, Berntson, GG, eds. Handbook of Psychophysiology. 4th ed. New York: Cambridge University Press; 2016:4173. doi: 10.1017/9781107415782.004.
81. Button, KS, Ioannidis, JPA, Mokrysz, C, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14(5):365376. doi: 10.1038/nrn3475.
82. Martel, S, Bruzzone, M, Ceppi, M, et al. Risk of adverse events with the addition of targeted agents to endocrine therapy in patients with hormone receptor-positive metastatic breast cancer: a systematic review and meta-analysis. Cancer Treat Rev. 2018;62:123132. doi: 10.1016/j.ctrv.2017.09.009.
83. Conroy, SK, McDonald, BC, Smith, DJ, et al. Alterations in brain structure and function in breast cancer survivors: effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Res Treat. 2013;137(2):493502. doi: 10.1007/s10549-012-2385-x.
84. Ahles, TA, Root, JC. Cognitive effects of cancer and cancer treatments. Annu Rev Clin Psychol. 2018;14:425451. doi: 10.1146/annurev-clinpsy-050817.
85. Cacioppo, JT, Berntson, GG. Integrative neuroscience for the behavioral sciences: implications for inductive inference. In: Berntson, GG, Cacioppo, JT, eds. Handbook of Neuroscience for the Behavioral Sciences. Hoboken, NJ: Wiley; 2009:3–11. doi: 10.1002/9780470478509.neubb001002.
86. Taylor, AG, Goehler, LE, Galper, DI, et al. Top-down and bottom-up mechanisms in mind-body medicine: development of an integrative framework for psychophysiological research. Explore (NY). 2010;6(1):2941. doi: 10.1016/j.explore.2009.10.004.
87. Goshen, I, Yirmiya, R. Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol. 2009;30(1):3045. doi: 10.1016/j.yfrne.2008.10.001.
88. Yirmiya, R, Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25(2):181213. doi: 10.1016/j.bbi.2010.10.015.
89. Kronfol, Z, Remick, DG. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry. 2000;157(5):683694. doi: 10.1176/appi.ajp.157.5.683.
90. Wilson, CJ, Finch, CE, Cohen, HJ. Cytokines and cognition—the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc. 2002;50(12):20412056. doi: 10.1046/j.1532-5415.2002.50619.x.
91. Quan, N, Banks, WA. Brain-immune communication pathways. Brain Behav Immun. 2007;21(6):727735. doi: 10.1016/j.bbi.2007.05.005.
92. Hoemann, K, Gendron, M, Barrett, LF. Mixed emotions in the predictive brain. Curr Opin Behav Sci. 2017;15:5157. doi: 10.1016/j.cobeha.2017.05.013.
93. Sterling, P. Allostasis: a model of predictive regulation. Physiol Behav. 2012;106(1):515. doi: 10.1016/j.physbeh.2011.06.004.
94. Miller, GE, Cohen, S, Ritchey, AK. Chronic psychological stress and the regulation of pro-inflammatory cytokines: a glucocorticoid-resistance model. Health Psychol. 2002;21(6):531541. doi: 10.1037//0278-6133.21.6.531.
95. Goldapple, K, Segal, Z, Garson, C, et al. Modulation of cortical-limbic pathways in major depression. Arch Gen Psychiatry. 2004;61(1):3441. doi: 10.1001/archpsyc.61.1.34.
96. Aupperle, RL, Allard, CB, Simmons, AN, et al. Neural responses during emotional processing before and after cognitive trauma therapy for battered women. Psychiatry Res. 2013;214(1):4855. doi: 10.1016/j.pscychresns.2013.05.001.
97. Damasio, A, Carvalho, GB. The nature of feelings: evolutionary and neurobiological origins. Nat Rev Neurosci. 2013;14(2):143152. doi: 10.1038/nrn3403.
98. Craig, AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655666. doi: 10.1038/nrn894.
99. Ceunen, E, Vlaeyen, JWS, Van Diest, I. On the origin of interoception. Front Psychol. 2016;7:743. doi: 10.3389/fpsyg.2016.00743.
100. Craig, AD. Interoception and emotion: a neuroanatomical perspective. In: Lewis, M, Haviland-Jones, JM, Barrett, LF, eds. Handbook of Emotions. 3rd ed. New York: Guilford Press; 2008:272292.
101. Critchley, HD, Harrison, NA. Visceral influences on brain and behavior. Neuron. 2013;77(4):624638. doi: 10.1016/j.neuron.2013.02.008.
102. Dantzer, R, O’Connor, JC, Freund, GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):4656. doi: 10.1038/nrn2297.
103. Critchley, HD, Garfinkel, SN. Interoception and emotion. Curr Opin Psychol. 2017;17:714. doi: 10.1016/j.copsyc.2017.04.020.
104. Dantzer, R, Kelley, KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21(2):153160. doi: 10.1016/j.bbi.2006.09.006.
105. Walker, AK, Kavelaars, A, Heijnen, CJ, et al. Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev. 2013;66(1):80101. doi: 10.1124/pr.113.008144.
106. Wang, X, Walitt, B, Saligan, L, et al. Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine. 2015;72(1):8696. doi: 10.1016/j.cyto.2014.12.006.
107. Bompaire, F, Durand, T, Léger-Hardy, I, et al. Chemotherapy-related cognitive impairment or « chemobrain »: concept and state of art. Geriatr Psychol Neuropsychiatr Vieil. 2017;15(1):8998. doi: 10.1684/pnv.2017.0659.
108. Hurria, A, Somlo, G, Ahles, T. Renaming “chemobrain”. Cancer Invest. 2007;25(6):373377. doi: 10.1080/07357900701506672.
109. Cheung, YT, Ng, T, Shwe, M, et al. Association of proinflammatory cytokines and chemotherapy-associated cognitive impairment in breast cancer patients: a multi-centered, prospective, cohort study. Ann Oncol. 2015;26(7):14461451. doi: 10.1093/annonc/mdv206.
110. Kesler, SR. Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiol Aging. 2014;35(Suppl 2):S11S19. doi: 10.1016/j.neurobiolaging.2014.03.036.
111. Buckner, RL, Andrews-Hanna, JR, Schacter, DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:138. doi: 10.1196/annals.1440.011.
112. Simó, M, Rifà-Ros, X, Rodriguez-Fornells, A, Bruna, J. Chemobrain: a systematic review of structural and functional neuroimaging studies. Neurosci Biobehav Rev. 2013;37(8):13111321. doi: 10.1016/j.neubiorev.2013.04.015.
113. Costanzo, ES, Sood, AK, Lutgendorf, SK. Biobehavioral influences on cancer progression. Immunol Allergy Clin North Am. 2011;31(1):109132. doi: 10.1016/j.iac.2010.09.001.
114. Lutgendorf, SK, Andersen, BL. Biobehavioral approaches to cancer progression and survival. Am Psychol. 2015;70(2):186197. doi: 10.1037/a0035730.
115. Ader, R, Cohen, N, Felten, D. Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet. 1995;345(8942):99103. doi: 10.1016/S0140-6736(95)90066-7.
116. Lutgendorf, SK, Costanzo, ES. Psychoneuroimmunology and health psychology: an integrative model. Brain Behav Immun. 2003;17(4):225232. doi: 10.1016/S0889-1591(03)00033-3.
117. McDonald, PG, O’Connell, M, Lutgendorf, SK. Psychoneuroimmunology and cancer: a decade of discovery, paradigm shifts, and methodological innovations. Brain Behav Immun. 2013;30(Suppl):S1S9. doi: 10.1016/J.BBI.2013.01.003.
118. Antoni, MH, Lutgendorf, SK, Cole, SW, et al. The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer. 2006;6(3):240248. doi: 10.1038/nrc1820.
119. Cole, SW, Nagaraja, AS, Lutgendorf, SK, et al. Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer. 2015;15(9):563572. doi: 10.1038/nrc3978.
120. Abercrombie, HC, Giese-Davis, J, Sephton, S, et al. Flattened cortisol rhythms in metastatic breast cancer patients. Psychoneuroendocrinology. 2004;29(8):10821092. doi: 10.1016/j.psyneuen.2003.11.003.
121. Sephton, SE, Sapolsky, RM, Kraemer, HC, et al. Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst. 2000;92(12):9941000. doi: 10.1093/JNCI/92.12.994.
122. Cohen, L, Cole, SW, Sood, AK, et al. Depressive symptoms and cortisol rhythmicity predict survival in patients with renal cell carcinoma: role of inflammatory signaling. PLoS One. 2012;7(8):e42324. doi: 10.1371/journal.pone.0042324.
123. Sephton, SE, Lush, E, Dedert, EA, et al. Diurnal cortisol rhythm as a predictor of lung cancer survival. Brain Behav Immun. 2013;30(Suppl):S163S170. doi: 10.1016/j.bbi.2012.07.019.
124. Siegel, RL, Miller, KD, Jemal, A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):730. doi: 10.3322/caac.21442.
125. Bouchard, LC, Antoni, MH, Blomberg, BB, et al. Postsurgical depressive symptoms and proinflammatory cytokine elevations in women undergoing primary treatment for breast cancer. Psychosom Med. 2016;78(1):2637. doi: 10.1097/PSY.0000000000000261.
126. Antoni, MH, Lutgendorf, SK, Blomberg, B, et al. Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics. Biol Psychiatry. 2012;71(4):366372. doi: 10.1016/j.biopsych.2011.10.007.
127. Antoni, MH, Jacobs, JM, Bouchard, LC, et al. Post-surgical depressive symptoms and long-term survival in non-metastatic breast cancer patients at 11-year follow-up. Gen Hosp Psychiatry. 2017;44:1621. doi: 10.1016/j.genhosppsych.2016.10.002.
128. Antoni, MH, Bouchard, LC, Jacobs, JM, et al. Stress management, leukocyte transcriptional changes and breast cancer recurrence in a randomized trial: an exploratory analysis. Psychoneuroendocrinology. 2016;74(6188):269277. doi: 10.1016/j.psyneuen.2016.09.012.
129. Cole, SW, Sood, AK. Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res. 2012;18(5):12011206. doi: 10.1158/1078-0432.CCR-11-0641.
130. Cole, SW. Human social genomics. PLoS Genet. 2014;10(8):410. doi: 10.1371/journal.pgen.1004601.
131. Slavich, GM, Cole, SW. The emerging field of human social genomics. Clin Psychol Sci. 2013;1(3):331348. doi: 10.1177/2167702613478594.
132. Miller, G, Chen, E, Cole, SW. Health psychology: developing biologically plausible models linking the social world and physical health. Annu Rev Psychol. 2009;60(1):501524. doi: 10.1146/annurev.psych.60.110707.163551.
133. Cohen, S, Doyle, WJ, Skoner, DP. Psychological stress, cytokine production, and severity of upper respiratory illness. Psychosom Med. 1999;61(2):175180. doi: 10.1097/00006842-199903000-00009.
134. Antoni, MH, Lechner, S, Diaz, A, et al. Cognitive behavioral stress management effects on psychosocial and physiological adaptation in women undergoing treatment for breast cancer. Brain Behav Immun. 2009;23(5):580591. doi: 10.1016/j.bbi.2008.09.005.
135. Van Der Pompe, G, Antoni, MH, Heijnen, CJ. Elevated basal cortisol levels and attenuated ACTH and cortisol responses to a behavioral challenge in women with metastatic breast cancer. Psychoneuroendocrinology. 1996;21(4):361374. doi: 10.1016/0306-4530(96)00009-1.
136. Antoni, MH, Lechner, SC, Kazi, A, et al. How stress management improves quality of life after treatment for breast cancer. J Consult Clin Psychol. 2006;74(6):11431152. doi: 10.1037/0022-006X.74.6.1152.
137. Phillips, KM, Antoni, MH, Carver, CS, et al. Stress management skills and reductions in serum cortisol across the year after surgery for non-metastatic breast cancer. Cognit Ther Res. 2011;35(6):595600. doi: 10.1007/s10608-011-9398-3.
138. Phillips, KM, Antoni, MH, Lechner, SC, et al. Stress management intervention reduces serum cortisol and increases relaxation during treatment for nonmetastatic breast cancer. Psychosom Med. 2008;70(9):10441049. doi: 10.1097/PSY.0b013e318186fb27.
139. Andersen, BL, Farrar, WB, Golden-Kreutz, DM, et al. Psychological, behavioral, and immune changes after a psychological intervention: a clinical trial. J Clin Oncol. 2004;22(17):35703580. doi: 10.1200/JCO.2004.06.030.
140. Andersen, BL, Yang, H-C, Farrar, WB, et al. Psychologic intervention improves survival for breast cancer patients. Cancer. 2008;113(12):34503458. doi: 10.1002/cncr.23969.
141. Stagl, JM, Lechner, SC, Carver, CS, et al. A randomized controlled trial of cognitive-behavioral stress management in breast cancer: survival and recurrence at 11-year follow-up. Breast Cancer Res Treat. 2015;154(2):319328. doi: 10.1007/s10549-015-3626-6.
142. Andersen, BL, Thornton, LM, Shapiro, CL, et al. Biobehavioral, immune, and health benefits following recurrence for psychological intervention participants. Clin Cancer Res. 2010;16(12):32703278. doi: 10.1158/1078-0432.CCR-10-0278.
143. Thornton, LM, Andersen, BL, Carson, WE. Immune, endocrine, and behavioral precursors to breast cancer recurrence: a case-control analysis. Cancer Immunol Immunother. 2008;57(10):14711481. doi: 10.1007/s00262-008-0485-6.
144. Thornton, LM, Andersen, BL, Schuler, TA, et al. A psychological intervention reduces inflammatory markers by alleviating depressive symptoms: secondary analysis of a randomized controlled trial. Psychosom Med. 2009;71(7):715724. doi: 10.1097/PSY.0b013e3181b0545c.
145. Antoni, MH. Stress Management Intervention for Women with Breast Cancer. Washington, DC: American Psychological Association; 2003. doi: 10.1037/10488-000.
146. Antoni, MH, Lehman, JM, Kilbourn, KM, et al. Cognitive-behavioral stress management intervention decreases the prevalence of depression and enhances benefit finding among women under treatment for early-stage breast cancer. Health Psychol. 2001;20(1):2032. doi: 10.1037/0278-6133.20.1.20.
147. Cruess, DG, Antoni, MH, McGregor, BA, et al. Cognitive-behavioral stress management reduces serum cortisol by enhancing benefit finding among women being treated for early stage breast cancer. Psychosom Med. 2000;62(3):304308.
148. McGregor, BA, Antoni, MH, Boyers, A, et al. Cognitive-behavioral stress management increases benefit finding and immune function among women with early-stage breast cancer. J Psychosom Res. 2004;56(1):18. doi: 10.1016/S0022-3999(03)00036-9.
149. Beck, AT, Haigh, EAP. Advances in cognitive theory and therapy: the generic cognitive model. Annu Rev Clin Psychol. 2014;10(1):124. doi: 10.1146/annurev-clinpsy-032813-153734.
150. Ellis, A, Dryden, W. The Practice of Rational Emotive Behavior Therapy. New York: Springer; 1997.
151. Beck, AT, Dozois, DJA. Cognitive therapy: current status and future directions. Annu Rev Med. 2011;62:397409. doi: 10.1146/annurev-med-052209-100032.
152. Hofmann, SG, Asmundson, GJG, Beck, AT. The science of cognitive therapy. Behav Ther. 2013;44(2):199212. doi: 10.1016/j.beth.2009.01.007.
153. Beck, AT. The evolution of the cognitive model of depression and its neurobiological correlates. Am J Psychiatry. 2008;165(8):969977. doi: 10.1176/appi.ajp.2008.08050721.
154. Harmer, CJ, O’sullivan, U, Massey-Chase, R, et al. Effect of acute antidepressant administration on negative affective bias in depressed patients. Am J Psychiatry. 2009;166(10):11781184. doi: 10.1176/appi.ajp.2009.09020149.
155. Dobson, D, Dobson, K. Evidence-Based Practice of Cognitive-Behavioral Therapy. New York: Guilford Press; 2009. doi: 10.1080/16506070903190260.
156. Sharpe, L, Sensky, T, Timberlake, N, Ryan, B, et al. A blind, randomized, controlled trial of cognitive-behavioural intervention for patients with recent onset rheumatoid arthritis: preventing psychological and physical morbidity. Pain. 2001;89(2–3):275283. doi: 10.1016/S0304-3959(00)00379-1.
157. Leventhal, H, Phillips, LA, Burns, E. The common-sense model of self-regulation (CSM): a dynamic framework for understanding illness self-management. J Behav Med. 2016;39(6):935946. doi: 10.1007/s10865-016-9782-2.
158. Collie, K, Bottorff, JL, Long, BC. A narrative view of art therapy and art making by women with breast cancer. J Health Psychol. 2006;11(5):761775. doi: 10.1177/1359105306066632.
159. Vickberg, SM, Bovbjerg, DH, DuHamel, KN, et al. Intrusive thoughts and psychological distress among breast cancer survivors: global meaning as a possible protective factor. Behav Med. 2000;25(4):152160. doi: 10.1080/08964280009595744.
160. Lee, V, Cohen, SR, Edgar, L, et al. Meaning-making and psychological adjustment to cancer: development of an intervention and pilot results. Oncol Nurs Forum. 2006;33(2):291302. doi: 10.1007/s00268-005-0191-x.
161. Lee, V, Cohen, SR, Edgar, L, Laizner, AM, et al. Meaning-making and psychological adjustment to cancer: development of an intervention and pilot results. Oncol Nurs Forum. 2006;33(2):291302. doi: 10.1188/06.ONF.291-302.
162. Antoni, MH, Wimberly, SR, Lechner, SC, et al. Reduction of cancer-specific thought intrusions and anxiety symptoms with a stress management intervention among women undergoing treatment for breast cancer. Am J Psychiatry. 2006;163(10):17911797. doi: 10.1176/ajp.2006.163.10.1791.
163. Ritchie, CS, Kvale, E, Fisch, MJ. Multimorbidity: an issue of growing importance for oncologists. J Oncol Pract. 2011;7(6):371374. doi: 10.1200/JOP.2011.000460.
164. Sarfati, D, Koczwara, B, Jackson, C. The impact of comorbidity on cancer and its treatments. CA Cancer J Clin. 2016;66(4):337350. doi: 10.3322/caac.21342.
165. Fu, M, Axelrod, D, Guth, A, et al. Comorbidities and quality of life among breast cancer survivors: a prospective study. J Pers Med. 2015;5(3):229242. doi: 10.3390/jpm5030229.
166. Søgaard, M, Thomsen, RW, Bossen, KS, et al. The impact of comorbidity on cancer survival: a review. Clin Epidemiol. 2013;5(Suppl 1):329. doi: 10.2147/CLEP.S47150.
167. Blask, DE, Hill, SM, Dauchy, RT, et al. Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night. J Pineal Res. 2011;51(3):259269. doi: 10.1111/j.1600-079X.2011.00888.x.
168. Payne, J, Piper, B, Rabinowitz, I, Zimmerman, B. Biomarkers, fatigue, sleep, and depressive symptoms in women with breast cancer: a pilot study. Oncol Nurs Forum. 2006;35(4):635642. doi: 10.1188/06.ONF.775-783.
169. Roscoe, JA, Kaufman, ME, Matteson-Rusby, SE, et al. Cancer-related fatigue and sleep disorders. Oncologist. 2007;12(Suppl 1):3542. doi: 10.1634/theoncologist.12-S1-35.
170. Cash, E, Sephton, SE, Chagpar, AB, et al. Circadian disruption and biomarkers of tumor progression in breast cancer patients awaiting surgery. Brain Behav Immun. 2015;48:102114. doi: 10.1016/j.bbi.2015.02.017.
171. Filipski, E, King, VM, Li, XM, et al. Disruption of circadian coordination accelerates malignant growth in mice. Pathologie Biologie. 2003;51(4):216219. doi: 10.1016/S0369-8114(03)00034-8.
172. Filipski, E, Li, XM, Lévi, F. Disruption of circadian coordination and malignant growth. Cancer Causes Control. 2006;17(4):509514. doi: 10.1007/s10552-005-9007-4.
173. Steel, JL, Terhorst, L, Collins, KP, et al. Prospective analyses of cytokine mediation of sleep and survival in the context of advanced cancer. Psychosom Med. 2018;80(5):483491. doi: 10.1097/PSY.0000000000000579.
174. Basaria, S, Muller, DC, Carducci, MA, et al. Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen-deprivation therapy. Cancer. 2006;106(3):581588. doi: 10.1002/cncr.21642.
175. Felicetti, F, Fortunati, N, Brignardello, E. Cancer survivors: An expanding population with an increased cardiometabolic risk. Diabetes Res Clin Pract. 2018;143:432442.
176. Mottillo, S, Filion, KB, Genest, J, et al. The metabolic syndrome and cardiovascular risk: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):11131132. doi: 10.1016/j.jacc.2010.05.034.
177. Mehta, LS, Watson, KE, Barac, A, et al. Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation. 2018;137(8):e30e66. doi: 10.1161/CIR.0000000000000556.
178. Chrousos, GP. The role of stress and the hypothalamic–pituitary–adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. Int J Obes Relat Metab Disord. 2000;24(Suppl 2):S50S55. doi: 10.1038/sj.ijo.0801278.
179. Bergmann, N, Gyntelberg, F, Faber, J. The appraisal of chronic stress and the development of the metabolic syndrome: a systematic review of prospective cohort studies. Endocr Connect. 2014;3(2):R55R80. doi: 10.1530/EC-14-0031.
180. Miller, AH, Ancoli-Israel, S, Bower, JE, et al. Neuroendocrine-immune mechanisms of behavioral comorbidities in patients with cancer. J Clin Oncol. 2008;26(6):971982. doi: 10.1200/JCO.2007.10.7805.
181. Gulliksson, M, Burrell, G, Vessby, B, et al. Randomized controlled trial of cognitive behavioral therapy vs standard treatment to prevent recurrent cardiovascular events in patients with coronary heart disease: Secondary Prevention in Uppsala Primary Health Care project (SUPRIM). Arch Intern Med. 2011;171(2):134140.
182. Libby, P, Ridker, PM, Maseri, A. Inflammation and atherosclerosis. Circulation. 2002;105(9):11351143. doi: 10.1161/hc0902.104353.
183. Ben-Eliyahu, S. Cancer metastasis: promotion by stress and surgery. In: Opp, MR, ed. Primer of Psychoneuroimmunology Research. Los Angeles, CA: The Psychoneuroimmunology Research Society; 2016:155164.
184. Shaashua, L, Shabat-Simon, M, Haldar, R, et al. Perioperative COX-2 and β-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clin Cancer Res. 2017;23(16):4651-4661. doi: 10.1158/1078-0432.CCR-17-0152.
185. Rubinov, M, Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):10591069. doi: 10.1016/j.neuroimage.2009.10.003.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed