Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T20:24:50.171Z Has data issue: false hasContentIssue false

A Linkage Study Between the GABAA β2 and GABAAγ2 Subunit Genes and Major Psychoses

Published online by Cambridge University Press:  07 November 2014

Abstract

Background:

Alterations of the γ-aminobutyric acid (GABA) system have been implicated in the pathophysiology of major psychoses.

Objective:

Restriction fragment length polymorphisms associated with the human γ-aminobutyric acid type A (GABAA) β2 and GABAA γ2 subunit genes on chromosome 5q32-q35 were tested to determine whether they confer susceptibility to major psychoses.

Methods:

Thirty-two schizophrenic families and 25 bipolar families were tested for linkage.

Results:

Nonparametric linkage (NPL) analysis performed by GENEHUNTER showed no significant NPL scores for both genes in schizophrenia (GABAAβ2: NPL narrow=−0.450; NPL broad=−0.808; GABAA γ2: NPL narrow=0.177; NPL broad=−0.051) or bipolar disorder (GABAA β2: NPL narrow=0.834; NPL broad=0.783; GABAA γ2: NPL narrow=−0.159; NPL broad=0.070).

Conclusion:

Linkage analysis does not support the hypothesis that variants within the GABAA β2 and GABAA γ2 genes are significantly linked to major psychoses in a Portuguese population.

Type
Original Research
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Risch, N. Genetic linkage and complex diseases, with special reference to psychiatric disorders. Genet Epidemiol. 1990;7:316.Google Scholar
2. McGuffin, P, Owen, MJ, Farmer, AE. Genetic basis of schizophrenia. Lancet. 1995;346:678682.Google Scholar
3. Ott, J. Genetic linkage and complex disease: a comment. Genet Epidemiol. 1990;7:3536.CrossRefGoogle Scholar
4. Kruglyak, L, Daly, MJ, Reeve-Daly, MP, Lander, ES. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996;58:13471363.Google Scholar
5. Ashall, F. Genes for normal and diseased mental states. Trends Genet. 1994;10:3739.Google Scholar
6. Berrettini, W. Progress and pitfalls: bipolar molecular linkage studies. J Affect Disord. 1998;50:287297.CrossRefGoogle ScholarPubMed
7. Riley, BP, McGuffin, P. Linkage and association studies of schizophrenia. Am J Med Genet. 2000;97:2344.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
8. Baron, M. Genetics of schizophrenia and the new millennium: progress and pitfalls. Am J Med Genet. 2001;68:299312.Google Scholar
9. Gurling, HM, Kalsi, G, Brynjolfson, J, et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. Am J Med Genet. 2001;68:661673.Google Scholar
10. Kelsoe, JR, Spence, MR, Loetscher, E, et al. A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. Proc Natl Acad Sci U S A. 2001;98:585590.Google Scholar
11. Benes, FM, Vincent, SL, Alsterberg, G, Bird, ED, SanGiovanni, JP. Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. J Neurosci. 1992;12:924929.Google Scholar
12. Delini-Stula, A, Berdah-Tordjman, D. Benzodiazepines and GABA hypothesis of schizophrenia. J Psychopharmacol. 1995;9:5763.Google Scholar
13. Huntsman, MM, Tran, BV, Potkin, SG, Bunney, WE Jr, Jones, EG. Altered ratios of alternatively spliced long and short gamma2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics. Proc Natl Acad Sci U S A. 1998;95:1506615071.CrossRefGoogle ScholarPubMed
14. Dean, B, Hussain, T, Hayes, W, et al. Changes in serotonin2A and GABA(A) receptors in schizophrenia: studies on the human dorsolateral prefrontal cortex. J Neurochem. 1999;72:15931599.CrossRefGoogle ScholarPubMed
15. Wassef, AA, Dott, SG, Harris, A, et al. Critical review of GABA-ergic drugs in the treatment of schizophrenia. J Clin Psychopharmacol. 1999;19:222232.Google Scholar
16. Petty, F. GABA and mood disoders: a brief review and hypothesis. J Affect Disord. 1995;34:275281.Google Scholar
17. Shiah, I, Yatham, LN. GABA function in mood disorders: an update and critical review. Life Sci. 1998;63:12891303.CrossRefGoogle ScholarPubMed
18. Jones, EG, Hendry, HC. Co-localization of GABA and neuropeptides in neocortical neurons. Trends Neurosci. 1986;9:7176.Google Scholar
19. Young, AB, Chu, D. Distribution of GABAA and GABAB receptors in mammalian brain: potential targets for drug development. Drug Dev Res. 1990;21:161167.Google Scholar
20. Olsen, RW, Avoli, M. GABA and epileptogenesis. Epilepsia. 1997;38:399407.Google Scholar
21. Fritschy, JM, Kiener, T, Bouilleret, V, Loup, F. GABAergic neurons and GABAA receptors in temporal lobe epilepsy. Neurochem Int. 1999;34:435445.Google Scholar
22. Pratt, JA. The neuroanatomical basis of anxiety. Pharmacol Ther. 1992;55:149181.Google Scholar
23. Sarter, M, Schneider, HH, Stephens, DN. Treatment strategies for senile dementia: antagonist beta-carbolines Trends Neurosci. 1988;11:1317.Google Scholar
24. Izquierdo, I, Medina, JH. GABAA receptor modulation of memory: the role of endogenous benzodiazepines. Trends Pharmacol Sci. 1991;12:260265.Google Scholar
25. Barnard, EA, Skolnick, P, Olsen, RW, et al. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev. 1998;50:291313.Google Scholar
26. Johnson, KJ, Sander, T, Hicks, AA, et al. Confirmation of the localization of the human GABAA receptor alpha 1-subunit gene (GABRA1) to distal 5q by linkage analysis. Genomics. 1992;14:745748.Google Scholar
27. Wilcox, AS, Warrington, J, Gardiner, K, et al. Human chromosomal localization of genes encoding the gamma 1 and gamma 2 subunits of the gamma-aminobutyric acid receptor indicates that members of this gene family are often clustered in the genome. Proc Natl Acad Sci U S A. 1992;89:58575861.Google Scholar
28. Hicks, AA, Bailey, MES, Riley, BP, et al. Further evidence for clustering of human GABAA receptor subunit genes: localization of the alpha 6-subunit gene (GABRA6) to distal chromosome 5q by linkage analysis. Genomics. 1994;20:285288.Google Scholar
29. Mapping of the beta 2 subunit gene (GABRB2) to microdissected human chromosome 5q34-q35 defines a gene cluster for the most abundant GABAA receptor isof. Genomics. 1994;23:528553.Google Scholar
30. MacDonald, RL, Olsen, RW. GABAA receptors channels. Annu Rev Neurosci. 1994;17:569602.Google Scholar
31. Sieghart, W. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev. 1995;47:181234.Google Scholar
32. Smith, GB, Olsen, RW. Functional domains of GABAA receptors. Trends Pharmacol Sci. 1995;16:162168.Google Scholar
33. Tallman, JF, Cassella, JA, White, G, et al. GABAA receptors: diversity and its implications for CNS disease. Neuroscientist. 1999;5:351361.CrossRefGoogle Scholar
34. Modell, JG, Lenox, RH, Weiner, S. Inpatient clinical trial of lorazepam for the management of manic agitation. J Clin Psychopharmacol. 1985;5:109113.Google Scholar
35. Post, RM. Comparative pharmacology of bipolar disorder and schizophrenia. Schizophr Res. 1999;39:153158.Google Scholar
36. Bowden, CL, Brugger, AM, Swann, AC, et al. Efficacy of divalproex vs lithium and placebo in the treatment of mania. The Depakote Mania Study Group. JAMA. 1994;271:918924.CrossRefGoogle ScholarPubMed
37. Nurnberger, JL, Blehar, MC, Kaufmann, CA, et al. Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry. 1994;51:849859.Google Scholar
38. Azevedo, MH, Dourado, A, Valente, J, et al. The Portuguese language version of the diagnostic interview for genetic studies. Psychiatr Genet. 1993;3:189.Google Scholar
39. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington, DC: American Psychiatric Association; 1994.Google Scholar
40. Pato, CN, Macedo, A, Ambrosio, A, et al. Detection of expansion regions in Portuguese bipolar families. Am J Med Genet. 2000;96:854857.Google Scholar
41. Xu, J, Pato, MT, Torre, CD, et al. Evidence for linkage disequilibrium between the alpha 7-nicotinic receptor gene (CHRNA7) locus and schizophrenia in Azorean families. Am J Med Genet. 2001;105:669674.Google Scholar
42. Miller, SA, Dykes, DD, Plesky, HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.Google Scholar
43. Loh, E-W, Smith, I, Murray, R, et al. Association between variants at the GABAAbeta2, GABAAalpha6 and GABAAgamma2 gene cluster and alcohol dependence in a Scottish population. Mol Psychiatry. 1999;4:539544.Google Scholar
44. Lander, ES, Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995;11:241247.Google Scholar
45. Benes, FM, Khan, Y, Vincent, SL, Wickramasinghe, R. Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse. 1996;22:338349.Google Scholar
46. Squires, RF, Lajtha, A, Saederup, E, Palkovits, M. Reduced [3H]flunitrazepam binding in cingulate cortex and hippocampus of postmortem schizophrenic brains: is selective loss of glutamatergic neurons associated with major psychoses? Neurochem Res. 1993;18:219233.Google Scholar
47. Pandey, GN, Conley, RR, Pandey, SC, et al. Benzodiazepine receptors in the post-mortem brain of suicide victims and schizophrenic subjects. Psychiatry Res. 1997;71:137149.Google Scholar
48. Abi-Dargham, A, Laruelle, M, Krystal, J, et al. No evidence of altered in vivo benzodiazepine receptor binding in schizophrenia. Neuropsychopharmacology. 1999;20:650661.Google Scholar
49. Akbarian, S, Hunstsman, MM, Hagman, JO, et al. Gene expression for glutamic acid decarboxylase is reduces without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry. 1995;52:258266.Google Scholar
50. Volk, DW, Austin, MC, Pierri, JN, Sampson, AR, Lewis, DA. Decreased gtutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry. 2000;57:237245.CrossRefGoogle Scholar
51. Coon, H, Hicks, AA, Bailey, MES, et al. Analysis of GABAA receptor subunit genes in multiplex pedigrees with manic depression. Psychiatr Genet. 1994;4:185191.Google Scholar
52. De bruyn, A, Souery, D, Mendelbaum, K, Mendlewicz, J, Van Broeckhoven, C. A linkage study between bipolar disorder and genes involved in dopaminergic and GABAergic neurotransmission. Psychiatr Genet. 1996;6:6773.Google Scholar
53. Oruc, L, Furac, I, Croux, C, et al. Association study between bipolar disorder and candidate genes involved in dopamine-serotonin metabolism and GABAergic neurotransmission: a preliminary report. Psychiatr Genet. 1996;6:213217.Google Scholar
54. Duffy, D, Turecki, G, Grof, P, et al. Association and linkage studies of candidate genes involved in GABAergic neurotransmission in lithium-responsive bipolar disorder. J Psychiatry Neurosci. 2000;25:353358.Google Scholar
55. Papadimitriou, GN, Dikeos, DG, Karadima, G, et al. Association between the GABA(A) receptor alpha5 subunit gene locus (GABRA5) and bipolar affective disorder. Am J Med Genet. 1998;81:7380.Google Scholar
56. Lio, P, Morton, NE. Comparison of parametric and nonparametric methods to map oligogenes by linkage. Proc Natl Acad Sci USA. 1997;94:53445348.Google Scholar
57. Schindler, K, Torre, CD, Bauer, A, et al. Identification of a highly homogenous population for genetic study of psychiatric disorders. CNS Spectr. 1999;4:2224.Google Scholar
58. Paul, SE. GABA and glycine. In: Bloom, FE, Kupfer, DJ, eds. Psychopharmacology: The Fourth Generation of Progress. New York, NY: Raven Press; 1995:8794.Google Scholar
59. Liu, F, Wan, Q, Pristupa, ZB, Yu, XM, Wang, YT, Niznik, HB. Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors. Nature. 2000;403:274280.Google Scholar