Skip to main content Accessibility help

Problematic internet use: an exploration of associations between cognition and COMT rs4818, rs4680 haplotypes

  • Konstantinos Ioannidis (a1) (a2), Sarah A. Redden (a3), Stephanie Valle (a3), Samuel R. Chamberlain (a1) (a2) and Jon E. Grant (a3)...



Problematic internet users suffer from impairment in a variety of cognitive domains. Research suggests that COMT haplotypes exert differential effects on cognition. We sought to investigate differences in the genetic profiles of problematic internet users and whether those could shed light on potential cognitive differences.


We recruited 206 non-treatment seeking participants with heightened impulsive traits and obtained cross-sectional demographic, clinical, and cognitive data as well as the genetic haplotypes of COMT rs4680 and rs4818. We identified 24 participants who presented with problematic internet use (PIU) and compared PIU and non-PIU participants using one-way analysis of variance (ANOVA) and chi square as appropriate.


PIU was associated with worse performance on decision making, rapid visual processing, and spatial working memory tasks. Genetic variants were associated with altered cognitive performance, but rates of PIU did not statistically differ for particular haplotypes of COMT.


This study indicates that PIU is characterized by deficits in decision making and working memory domains; it also provides evidence for elevated impulsive responses and impaired target detection on a sustained attention task, which is a novel area worth exploring further in future work. The effects observed in the genetic influences on cognition of PIU subjects imply that the genetic heritable components of PIU may not lie within the genetic loci influencing COMT function and cognitive performance; or that the genetic component in PIU involves many genetic polymorphisms each conferring only a small effect.


Corresponding author

*Address correspondence to: Jon E. Grant, Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Pritzker School of Medicine, 5841 S. Maryland Avenue, MC 3077, Chicago, IL 60637, USA. (Email:


Hide All
1.Fineberg, N, Demetrovics, Z, Stein, D, et al. Manifesto for a European research network into problematic usage of the internet. Eur Neuropsychopharmacol. 2018; 28(11): 12321246. doi: 10.1016/J.EURONEURO.2018.08.004.
2.Kuss, DJ, Lopez-Fernandez, O. Internet addiction and problematic internet use: a systematic review of clinical research. World J Psychiatry. 2016; 6(1): 143176. doi: 10.5498/wjp.v6.i1.143.
3.Király, O, Griffiths, MD, Demetrovics, Z. Internet gaming disorder and the DSM-5: conceptualization, debates, and controversies. Curr Addict Reports. 2015; 2(3): 254262. doi: 10.1007/s40429-015-0066-7.
4.Carli, V, Durkee, T, Wasserman, D, et al. The association between pathological internet use and comorbid psychopathology: a systematic review. Psychopathology. 2013; 46(1): 113. doi: 10.1159/000337971.
5.Ko, C-H, Yen, J-Y, Yen, C-F, et al. The association between internet addiction and psychiatric disorder: a review of the literature. Eur Psychiatry. 2012; 27(1): 18. doi: 10.1016/j.eurpsy.2010.04.011.
6.Chamberlain, SR, Ioannidis, K, Leppink, EW, et al. ADHD symptoms in non-treatment seeking young adults: relationship with other forms of impulsivity. CNS Spectr. 2016; 22(1): 19. doi: 10.1017/S1092852915000875.
7.Chamberlain, SR, Ioannidis, K, Grant, JE. The impact of comorbid impulsive/compulsive disorders on problematic internet use. J Behav Addict. 2018; 7(2): 269275. doi: 10.1556/2006.7.2018.30.
8.Ioannidis, K, Chamberlain, SR, Treder, MS, et al. Problematic internet use (PIU): associations with the impulsive-compulsive spectrum. An application of machine learning in psychiatry. J Psych. 2016; 83: 94102. doi: 10.1016/j.jpsychires.2016.08.010.
9.Ioannidis, K, Treder, MS, Chamberlain, SR, et al. Problematic internet use as an age-related multifaceted problem: evidence from a two-site survey. Addict Behav. 2018; 81: 157166. doi: 10.1016/J.ADDBEH.2018.02.017.
10.Ioannidis, K, Hook, R, Goudriaan, AE, et al. Cognitive deficits in problematic internet use: a meta-analysis of 40 studies. Br J Psychiatry. 2019; 20: 18. doi: 10.1192/bjp.2019.3.
11.Deryakulu, D, Ursavaş ÖF. Genetic and environmental influences on problematic internet use: a twin study. Comput Human Behav. 2014; 39:331338. doi: 10.1016/J.CHB.2014.07.038.
12.Li, M, Chen, J, Li, N, et al. A twin study of problematic internet use: its heritability and genetic association with effortful control. Twin Res Hum Genet. 2014; 17(4):279287. doi: 10.1017/thg.2014.32.
13.Vink, JM, Van Beijsterveldt, TCEM, Huppertz, C, et al. Heritability of compulsive internet use in adolescents. Addict Biol. 2016; 21(2): 460468. doi: 10.1111/adb.12218.
14.Hahn, E, Reuter, M, Spinath, FM, et al. Internet addiction and its facets: the role of genetics and the relation to self-directedness. Addict Behav. 2017; 65: 137146. doi: 10.1016/j.addbeh.2016.10.018.
15.Prescott, CA, Kendler, KS. Genetic and environmental contributions to alcohol abuse and dependence in a population-based sample of male twins. Am J Psychiatry. 1999; 156(1): 3440. doi: 10.1176/ajp.156.1.34.
16.Lee, YS, Han, DH, Yang, KC, et al. Depression like characteristics of 5HTTLPR polymorphism and temperament in excessive internet users. J Affect Disord. 2008; 109(1–2): 165169. doi: 10.1016/j.jad.2007.10.020.
17.Jeong, J-E, Rhee, J-K, Kim, T-M, et al. The association between the nicotinic acetylcholine receptor α4 subunit gene (CHRNA4) rs1044396 and internet gaming disorder in Korean male adults. PLoS One. 2017; 12(12): e0188358. doi: 10.1371/journal.pone.0188358.
18.Montag, C, Kirsch, P, Sauer, C, et al. The role of the CHRNA4 gene in internet addiction. J Addict Med. 2012; 6(3): 191195. doi: 10.1097/ADM.0b013e31825ba7e7.
19.Kim, J-Y, Jeong, J-E, Rhee, J-K, et al. Targeted exome sequencing for the identification of a protective variant against internet gaming disorder at rs2229910 of neurotrophic tyrosine kinase receptor, type 3 (NTRK3): a pilot study. J Behav Addict. 2016; 5(4): 631638. doi: 10.1556/2006.5.2016.077.
20.Volkow, ND, Fowler, JS, Wang, G-J, et al. Dopamine in drug abuse and addiction. Arch Neurol. 2007; 64(11): 1575. doi: 10.1001/archneur.64.11.1575.
21.Robbins, TW, Everitt, BJ, Nutt, DJ. Introduction. The neurobiology of drug addiction: new vistas. Philos Trans R Soc Lond B Biol Sci. 2008; 363(1507): 31093111. doi: 10.1098/rstb.2008.0108.
22.Hou, H, Jia, S, Hu, S, et al. Reduced striatal dopamine transporters in people with Internet addiction disorder. J Biomed Biotechnol. 2012; 2012: 854524. doi: 10.1155/2012/854524.
23.Kim, SH, Baik, S-H, Park, CS, et al. Reduced striatal dopamine D2 receptors in people with Internet addiction. Neuroreport. 2011; 22(8): 407411. doi: 10.1097/WNR.0b013e328346e16e.
24.Han, DH, Lee, YS, Yang, KC, et al. Dopamine genes and reward dependence in adolescents with excessive internet video game play. J Addict Med. 2007; 1(3): 133138. doi: 10.1097/ADM.0b013e31811f465f.
25.Grant, JE, Leppink, EW, Redden, SA, et al. COMT genotype, gambling activity, and cognition. J Psychiatr Res. 2015; 68: 371376. doi: 10.1016/j.jpsychires.2015.04.029.
26.Chen, J, Lipska, BK, Halim, N, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet. 2004; 75(5): 807821. doi: 10.1086/425589.
27.Roussos, P, Giakoumaki, SG, Pavlakis, S, et al. Planning, decision-making and the COMT rs4818 polymorphism in healthy males. Neuropsychologia. 2008; 46(2): 757763. doi: 10.1016/j.neuropsychologia.2007.10.009.
28.Young, KS. Internet addiction: the emergence of a new clinical disorder. Publ CyberPsychology Behav. 1998; 1(3): 237244. doi: 10.1089/cpb.1998.1.237.
29.Dong, G, Zhou, H, Zhao, X. Male Internet addicts show impaired executive control ability: evidence from a color-word Stroop task. Neurosci Lett. 2011; 499(2): 114118. doi: 10.1016/j.neulet.2011.05.047.
30.Li, Q, Nan, W, Taxer, J, et al. Problematic internet users show impaired inhibitory control and risk taking with losses: evidence from stop signal and mixed gambles tasks. Front Psychol. 2016; 7: 19. doi: 10.3389/fpsyg.2016.00370.
31.Chamberlain, SR, Redden, SA, Leppink, E, et al. Problematic internet use in gamblers: impact on clinical and cognitive measures. CNS Spectr. 2017; 22(6): 19. doi: 10.1017/S1092852917000037.
32.Sheehan, DV, Lecrubier, Y, Sheehan, KH, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998; 59(Suppl 20):2257; Accessed July 2, 2017.
33.Grant, JE, Levine, L, Kim, D, et al. Impulse control disorders in adult psychiatric inpatients. Am J Psychiatry. 2005; 162(11): 21842188. doi: 10.1176/appi.ajp.162.11.2184.
34.Patton, JH, Stanford, MS, Barratt, ES. Factor structure of the Barratt impulsiveness scale. J Clin Psychol. 1995; 51(6): 768774; Accessed September 17, 2016.
35.Burns, GL, Keortge, SG, Formea, GM, et al. Revision of the Padua Inventory of obsessive compulsive disorder symptoms: distinctions between worry, obsessions, and compulsions. Behav Res Ther. 1996; 34(2): 163173; Accessed January 7, 2017.
36.Frisch, MB, Cornell, J, Villanueva, M, et al. Clinical validation of the quality of life inventory. a measure of life satisfaction for use in treatment planning and outcome assessment. Psychol Assess. 1992; 4(1): 92101. doi: 10.1037/1040-3590.4.1.92.
37.Kim, Y-J, Lim, JA, Lee, JY, et al. Impulsivity and compulsivity in internet gaming disorder: a comparison with obsessive-compulsive disorder and alcohol use disorder. J Behav Addict. 2017; 6(4): 19. doi: 10.1556/2006.6.2017.069.
38.Aron, AR, Robbins, TW, Poldrack, RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci. 2004; 8(4): 170177. doi: 10.1016/j.tics.2004.02.010.
39.Liu, RT, Choi, JY, Boland, EM, et al. Childhood abuse and stress generation: the mediational effect of depressogenic cognitive styles. Psychiatry Res. 2013; 206(2–3): 217222. doi: 10.1016/j.psychres.2012.12.001.
40.Choi, S-W, Kim, H, Kim, G-Y, et al. Similarities and differences among internet gaming disorder, gambling disorder and alcohol use disorder: a focus on impulsivity and compulsivity. J Behav Addict. 2014; 3(4): 246253. doi: 10.1556/JBA.3.2014.4.6.
41.Lim, J-A, Lee, J-Y, Jung, HY, et al. Changes of quality of life and cognitive function in individuals with internet gaming disorder. Medicine (Baltimore). 2016; 95(50): e5695. doi: 10.1097/MD.0000000000005695.
42.Zhou, Z, Zhou, H, Zhu, H. Working memory, executive function and impulsivity in internet-addictive disorders: a comparison with pathological gambling. Acta Neuropsychiatr. 2016; 28(2): 92100. doi: 10.1017/neu.2015.54.
43.Zhou, Z, Zhu, H, Li, C, et al. Internet addictive individuals share impulsivity and executive dysfunction with alcohol-dependent patients. Front Behav Neurosci. 2014; 8: 288. doi: 10.3389/fnbeh.2014.00288.
44.Lawrence, AJ, Luty, J, Bogdan, NA, et al. Impulsivity and response inhibition in alcohol dependence and problem gambling. Psychopharmacology (Berl). 2009; 207(1): 163172. doi: 10.1007/s00213-009-1645-x.
45.Pawlikowski, M, Brand, M. Excessive internet gaming and decision making: do excessive World of Warcraft players have problems in decision making under risky conditions? Psychiatry Res. 2011;188 (3): 428433. doi: 10.1016/j.psychres.2011.05.017.
46.Qi, X, Du, X, Yang, Y, et al. Decreased modulation by the risk level on the brain activation during decision making in adolescents with internet gaming disorder. Front Behav Neurosci. 2015; 9: 18. doi: 10.3389/fnbeh.2015.00296.
47.Lorenz, RC, Krüger, J-K, Neumann, B, et al. Cue reactivity and its inhibition in pathological computer game players. Addict Biol. 2013; 18(1): 134146. doi: 10.1111/j.1369-1600.2012.00491.x.
48.Nikolaidou, M, Fraser, DS, Hinvest, N. Physiological markers of biased decision-making in problematic internet users. J Behav Addict. 2016; 5(3): 510517. doi: 10.1556/2006.5.2016.052.
49.Gau, SS-F, Huang, W-L. Rapid visual information processing as a cognitive endophenotype of attention deficit hyperactivity disorder. Psychol Med. 2014; 44(2): 435446. doi: 10.1017/S0033291713000640.
50.Owen, AM, Downes, JJ, Sahakian, BJ, et al. Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia. 1990; 28(10): 10211034.
51.Lotta, T, Vidgren, J, Tilgmann, C, et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry. 1995; 34(13): 42024210.
52.Farrell, SM, Tunbridge, EM, Braeutigam, S, et al. COMT Val(158)Met genotype determines the direction of cognitive effects produced by catechol-O-methyltransferase inhibition. Biol Psychiatry. 2012; 71(6): 538544. doi: 10.1016/j.biopsych.2011.12.023.
53.van den Bos, R, Homberg, J, Gijsbers, E, et al. The effect of COMT Val158 Met genotype on decision-making and preliminary findings on its interaction with the 5-HTTLPR in healthy females. Neuropharmacology. 2009; 56(2): 493498. doi: 10.1016/j.neuropharm.2008.10.002.
54.Soeiro-De-Souza, M, Stanford, M, Bio, D, et al. Association of the COMT Met158 allele with trait impulsivity in healthy young adults. Mol Med Rep. 2013; 7(4): 10671072. doi: 10.3892/mmr.2013.1336.
55.Schacht, JP. COMT val158met moderation of dopaminergic drug effects on cognitive function: a critical review. Pharmacogenomics J. 2016; 16(5): 430438. doi: 10.1038/tpj.2016.43.
56.Robbins, TW, Arnsten, AFT. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci. 2009; 32(1): 267287. doi: 10.1146/annurev.neuro.051508.135535.
57.Nackley, AG, Shabalina, SA, Tchivileva, IE, et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science. 2006; 314(5807): 19301933. doi: 10.1126/science.1131262.
58.Roussos, P, Giakoumaki, SG, Bitsios, P. Tolcapone effects on gating, working memory, and mood interact with the synonymous catechol-O-methyltransferase rs4818C/G polymorphism. Biol Psychiatry. 2009;66(11): 9971004. doi: 10.1016/j.biopsych.2009.07.008.
59.Graffelman, J. Exploring Diallelic Genetic Markers: The HardyWeinberg Package. Journal of Statistical Software. 2015; 64(3): 123.
60.Venables, WN, Ripley, BD. Modern Applied Statistics with S. Fourth edition. New York: Springer; 2002.
61.Faul, F, Erdfelder, E, Lang, A-G, et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007; 39: 175191.
62.Laconi, S, Rodgers, RF, Chabrol, H. The measurement of internet addiction: a critical review of existing scales and their psychometric properties. Comput Human Behav. 2014; 41: 190202. doi: 10.1016/J.CHB.2014.09.026.
63.Ho, RC, Zhang, MWB, Tsang, TY, et al. The association between internet addiction and psychiatric co-morbidity: a meta-analysis. BMC Psychiatry. 2014; 14: 183. doi: 10.1186/1471-244X-14-183.


Problematic internet use: an exploration of associations between cognition and COMT rs4818, rs4680 haplotypes

  • Konstantinos Ioannidis (a1) (a2), Sarah A. Redden (a3), Stephanie Valle (a3), Samuel R. Chamberlain (a1) (a2) and Jon E. Grant (a3)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed