Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T07:25:48.674Z Has data issue: false hasContentIssue false

The role of integrin beta in schizophrenia: a preliminary exploration

Published online by Cambridge University Press:  24 October 2022

Binshan He
Affiliation:
Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
Yuhan Wang
Affiliation:
Department of Blood Transfusion, Ya’an People’s Hospital, Ya’an, China
Huang Li
Affiliation:
Department of Clinical Medicine, Southwest Medical University, Luzhou, China
Yuanshuai Huang*
Affiliation:
Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
*
*Author for correspondence: Yuanshuai Huang Email: hys@live.cn

Abstract

Integrins are transmembrane heterodimeric (αβ) receptors that transduce mechanical signals between the extracellular milieu and the cell in a bidirectional manner. Extensive research has shown that the integrin beta (β) family is widely expressed in the brain and that they control various aspects of brain development and function. Schizophrenia is a relatively common neurological disorder of unknown etiology and has been found to be closely related to neurodevelopment and neurochemicals in neuropathological studies of schizophrenia. Here, we review literature from recent years that shows that schizophrenia involves multiple signaling pathways related to neuronal migration, axon guidance, cell adhesion, and actin cytoskeleton dynamics, and that dysregulation of these processes affects the normal function of neurons and synapses. In fact, alterations in integrin β structure, expression and signaling for neural circuits, cortex, and synapses are likely to be associated with schizophrenia. We explored several aspects of the possible association between integrin β and schizophrenia in an attempt to demonstrate the role of integrin β in schizophrenia, which may help to provide new insights into the study of the pathogenesis and treatment of schizophrenia.

Type
Review
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mueser, KT, McGurk, SR. Schizophrenia. Lancet. 2004;363(9426):20632072.CrossRefGoogle ScholarPubMed
Birnbaum, R, Weinberger, DR. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat Rev Neurosci. 2017;18(12):727740.CrossRefGoogle ScholarPubMed
Walsh, MT, Ryan, M, Hillmann, A, Condren, R, Kenny, D, Dinan, T, Thakore, JH. Elevated expression of integrin alpha(IIb) beta(IIIa) in drug-naïve, first-episode schizophrenic patients. Biol Psychiatry. 2002;52(9):874879.CrossRefGoogle Scholar
Wang, KS, Liu, X, Arana, TB, Thompson, N, Weisman, H, Devargas, C, Mao, C, Su, BB, Camarillo, C, Escamilla, MA, Xu, C. Genetic association analysis of ITGB3 polymorphisms with age at onset of schizophrenia. J Mol Neurosci. 2013;51(2):446453.CrossRefGoogle ScholarPubMed
Matsuzaki, S, Tohyama, M. Molecular mechanism of schizophrenia with reference to disrupted-in-schizophrenia 1 (DISC1). Neurochem Int. 2007;51(2-4):165172.CrossRefGoogle ScholarPubMed
Enomoto, A, Asai, N, Namba, T, Wang, Y, Kato, T, Tanaka, M, Tatsumi, H, Taya, S, Tsuboi, D, Kuroda, K, Kaneko, N, Sawamoto, K, Miyamoto, R, Jijiwa, M, Murakumo, Y, Sokabe, M, Seki, T, Kaibuchi, K, Takahashi, M. Roles of disrupted-in-schizophrenia 1-interacting protein girdin in postnatal development of the dentate gyrus. Neuron. 2009;63(6):774787.CrossRefGoogle ScholarPubMed
Hattori, T, Shimizu, S, Koyama, Y, Yamada, K, Kuwahara, R, Kumamoto, N, Matsuzaki, S, Ito, A, Katayama, T, Tohyama, M. DISC1 regulates cell-cell adhesion, cell-matrix adhesion and neurite outgrowth. Mol Psychiatry, 2010;15(8):798809.CrossRefGoogle ScholarPubMed
Miyoshi, K, Honda, A, Baba, K, Taniguchi, M, Oono, K, Fujita, T, Kuroda, S, Katayama, T, Tohyama, M. Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry. 2003;8(7):685694.CrossRefGoogle ScholarPubMed
Carter, MD, Shah, CR, Muller, CL, Crawley, JN, Carneiro, AM, Weele J, Veenstra-Vander. Absence of preference for social novelty and increased grooming in integrin β3 knockout mice: initial studies and future directions. Autism Res. 2011;4(1):5767.CrossRefGoogle ScholarPubMed
McGeachie, AB, Skrzypiec, AE, Cingolani, LA, Letellier, M, Pawlak, R, Goda, Y. β3 integrin is dispensable for conditioned fear and hebbian forms of plasticity in the hippocampus. Eur J Neurosci. 2012;36(4):24612469.CrossRefGoogle ScholarPubMed
Varney, S, Polston, KF, Jessen, T, Carneiro, AM. Mice lacking integrin β3 expression exhibit altered response to chronic stress. Neurobiol Stress. 2015;2:5158.CrossRefGoogle ScholarPubMed
Mirnics, K, Middleton, FA, Lewis, DA, Levitt, P. Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci. 2001;24(8):479486.CrossRefGoogle ScholarPubMed
McCullumsmith, RE, Clinton, SM, Meador-Woodruff, JH. Schizophrenia as a disorder of neuroplasticity. Int Rev Neurobiol. 2004;59:1945.CrossRefGoogle ScholarPubMed
Eastwood, SL. The synaptic pathology of schizophrenia: is aberrant neurodevelopment and plasticity to blame? Int Rev Neurobiol. 2004;59:4772.CrossRefGoogle ScholarPubMed
Stephan, KE, Baldeweg, T, Friston, KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry. 2006;59(10):929939.CrossRefGoogle ScholarPubMed
Pocklington, AJ, O’Donovan, M, and Owen, MJ. The synapse in schizophrenia. Eur J Neurosci. 2014;39(7):10591067.CrossRefGoogle ScholarPubMed
Yin, DM, Chen, YJ, Sathyamurthy, A, Xiong, WC, Mei, L. Synaptic dysfunction in schizophrenia. Adv Exp Med Biol. 2012;970:493516.CrossRefGoogle ScholarPubMed
Moosmang, S, Haider, N, Klugbauer, N, Adelsberger, H, Langwieser, N, Müller, J, Stiess, M, Marais, E, Schulla, V, Lacinova, L, Goebbels, S, Nave, KA, Storm, DR, Hofmann, F, Kleppisch, T. Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J Neurosci. 2005;25(43):98839892.CrossRefGoogle ScholarPubMed
Nikonenko, I, Toni, N, Moosmayer, M, Shigeri, Y, Muller, D, Sargent Jones, L. Integrins are involved in synaptogenesis, cell spreading, and adhesion in the postnatal brain. Brain Res Dev Brain Res. 2003;140(2):185194.CrossRefGoogle ScholarPubMed
Mortillo, S, Elste, A, Ge, Y, Patil, SB, Hsiao, K, Huntley, GW, Davis, RL, Benson, DL. Compensatory redistribution of neuroligins and N-cadherin following deletion of synaptic β1-integrin. J Comp Neurol, 2012;520(9):20412052.CrossRefGoogle ScholarPubMed
Kerrisk, ME, Greer, CA, Koleske, AJ. Integrin α3 is required for late postnatal stability of dendrite arbors, dendritic spines and synapses, and mouse behavior. J Neurosci. 2013;33(16):67426752.CrossRefGoogle ScholarPubMed
Warren, MS, Bradley, WD, Gourley, SL, Lin, YC, Simpson, MA, Reichardt, LF, Greer, CA, Taylor, JR, Koleske, AJ. Integrin β1 signals through Arg to regulate postnatal dendritic arborization, synapse density, and behavior. J Neurosci. 2012;32(8):28242834.CrossRefGoogle ScholarPubMed
Chan, CS, Levenson, JM, Mukhopadhyay, PS, Zong, L, Bradley, A, Sweatt, J D, Davis, RL. Alpha3-integrins are required for hippocampal long-term potentiation and working memory. Learn Mem, 2007;14(9):606615.CrossRefGoogle ScholarPubMed
Chan, CS, Weeber, EJ, Zong, L, Fuchs, E, Sweatt, JD, Davis, RL. Beta 1-integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity, and working memory. J Neurosci. 2006;26(1):223232.CrossRefGoogle ScholarPubMed
Omar, MH, Kerrisk Campbell, M, Xiao, X, Zhong, Q, Brunken, WJ, Miner, JH, Greer, CA, Koleske, AJ. CNS neurons deposit laminin α5 to stabilize synapses. Cell Rep. 2017;21(5):12811292.CrossRefGoogle ScholarPubMed
Lin, YC, Yeckel, MF, Koleske, AJ. Abl2/Arg controls dendritic spine and dendrite arbor stability via distinct cytoskeletal control pathways. J Neurosci. 2013;33(5):18461857.CrossRefGoogle ScholarPubMed
Sfakianos, MK, Eisman, A, Gourley, SL, Bradley, WD, Scheetz, AJ, Settleman, J, Taylor, JR, Greer, CA, Williamson, A, Koleske, AJ. Inhibition of Rho via Arg and p190RhoGAP in the postnatal mouse hippocampus regulates dendritic spine maturation, synapse and dendrite stability, and behavior. J Neurosci. 2007;27(41):1098210992.CrossRefGoogle ScholarPubMed
Simpson, MA, Bradley, WD, Harburger, D, Parsons, M, Calderwood, DA, Koleske, AJ. Direct interactions with the integrin β1 cytoplasmic tail activate the Abl2/Arg kinase. J Biol Chem. 2015;290(13):83608372.CrossRefGoogle ScholarPubMed
Cingolani, LA, Goda, Y. Differential involvement of beta3 integrin in pre- and postsynaptic forms of adaptation to chronic activity deprivation. Neuron Glia Biol. 2008;4(3):179187.CrossRefGoogle ScholarPubMed
Pozo, K, Cingolani, LA, Bassani, S, Laurent, F, Passafaro, M, Goda, Y. β3 integrin interacts directly with GluA2 AMPA receptor subunit and regulates AMPA receptor expression in hippocampal neurons. Proc Natl Acad Sci U S A. 2012;109(4):13231328.CrossRefGoogle ScholarPubMed
Lin, CY, Hilgenberg, LG, Smith, MA, Lynch, G, Gall, CM. Integrin regulation of cytoplasmic calcium in excitatory neurons depends upon glutamate receptors and release from intracellular stores. Mol Cell Neurosci. 2008;37(4):770780.CrossRefGoogle ScholarPubMed
Liu, X, Huai, J, Endle, H, Schlüter, L, Fan, W, Li, Y, Richers, S, Yurugi, H, Rajalingam, K, Ji, H, Cheng, H, Rister, B, Horta, G, Baumgart, J, Berger, H, Laube, G, Schmitt, U, Schmeisser, MJ, Boeckers, TM, Tenzer, S, Vlachos, A, Deller, T, Nitsch, R, Vogt, J. PRG-1 regulates synaptic plasticity via intracellular PP2A/β1-integrin signaling. Dev Cell. 2016;38(3):275290.CrossRefGoogle ScholarPubMed
Huang, Z, Shimazu, K, Woo, NH, Zang, K, Müller, U, Lu, B, Reichardt, LF. Distinct roles of the beta 1-class integrins at the developing and the mature hippocampal excitatory synapse. J Neurosci. 2006;26(43):1120811219.CrossRefGoogle ScholarPubMed
Wang, W, Jia, Y, Pham, DT, Palmer, LC, Jung, KM, Cox, CD, Rumbaugh, G, Piomelli, D, Gall, CM, Lynch, G. Atypical endocannabinoid signaling initiates a new form of memory-related plasticity at a cortical input to hippocampus. Cereb Cortex. 2018;28(7):22532266.CrossRefGoogle Scholar
Kawaguchi, SY, Hirano, T. Integrin alpha3beta1 suppresses long-term potentiation at inhibitory synapses on the cerebellar Purkinje neuron. Mol Cell Neurosci. 2006;31(3):416426.CrossRefGoogle ScholarPubMed
Park, YK, Goda, Y. Integrins in synapse regulation. Nat Rev Neurosci. 2016;17(12):745756.CrossRefGoogle ScholarPubMed
Chen, YJ, Zhang, M, Yin, DM, Wen, L, Ting, A, Wang, P, Lu, YS, Zhu, XH, Li, SJ, Wu, CY, Wang, XM, Lai, C, Xiong, WC, Mei, L, Gao, TM. ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation. Proc Natl Acad Sci U S A. 2010;107(50):2181821823.CrossRefGoogle ScholarPubMed
Huang, YZ, Won, S, Ali, DW, Wang, Q, Tanowitz, M, Du, QS, Pelkey, KA, Yang, DJ, Xiong, WC, Salter, MW, Mei, L. Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron. 2000;26(2):443455.CrossRefGoogle ScholarPubMed
Woo, RS, Li, XM, Tao, Y, Carpenter-Hyland, E, Huang, YZ, Weber, J, Neiswender, H, Dong, XP, Wu, J, Gassmann, M, Lai, C, Xiong, WC, Gao, TM, Mei, L. Neuregulin-1 enhances depolarization-induced GABA release. Neuron. 2007;54(4):599610.CrossRefGoogle ScholarPubMed
Wen, L, Lu, YS, Zhu, XH, Li, XM, Woo, RS, Chen, YJ, Yin, DM, Lai, C, Terry, AV Jr., Vazdarjanova, A, Xiong, WC, Mei, L. Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci U S A. 2010;107(3):12111216.CrossRefGoogle ScholarPubMed
Bogerts, B, Meertz, E, Schönfeldt-Bausch, R. Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch Gen Psychiatry. 1985;42(8):784791.CrossRefGoogle ScholarPubMed
Brown, R, Colter, N, Corsellis, JA, Crow, TJ, Frith, CD, Jagoe, R, Johnstone, EC, Marsh, L. Postmortem evidence of structural brain changes in schizophrenia. Differences in brain weight, temporal horn area, and parahippocampal gyrus compared with affective disorder. Arch Gen Psychiatry. 1986;43(1):3642.CrossRefGoogle ScholarPubMed
Pakkenberg, B. Post-mortem study of chronic schizophrenic brains. Br J Psychiatry. 1987;151:744752.CrossRefGoogle ScholarPubMed
Wong, AH, Van Tol, HH. Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev. 2003;27(3):269306.CrossRefGoogle ScholarPubMed
Haijma, SV, Van Haren, N, Cahn, W, Koolschijn, PC, Hulshoff Pol, HE, Kahn, RS. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr Bull. 2013;39(5):11291138.CrossRefGoogle ScholarPubMed
Blaess, S, Graus-Porta, D, Belvindrah, R, Radakovits, R, Pons, S, Littlewood-Evans, A, Senften, M, Guo, H, Li, Y, Miner, JH, Reichardt, LF, Müller, U. Beta1-integrins are critical for cerebellar granule cell precursor proliferation. J Neurosci. 2004;24(13):34023412.CrossRefGoogle ScholarPubMed
Ellegood, J, Henkelman, RM, Lerch, JP. Neuroanatomical assessment of the integrin β3 mouse model related to autism and the serotonin system using high resolution MRI. Front Psychiatry. 2012;3:37.CrossRefGoogle ScholarPubMed
Steadman, PE, Ellegood, J, Szulc, KU, Turnbull, DH, Joyner, AL, Henkelman, RM, Lerch, JP. Genetic effects on cerebellar structure across mouse models of autism using a magnetic resonance imaging atlas. Autism Res. 2014;7(1):124137.CrossRefGoogle ScholarPubMed
Xie, T, Zhang, X, Tang, X, Zhang, H, Yu, M, Gong, G, Wang, X, Evans, A, Zhang, Z, He, Y. Mapping convergent and divergent cortical thinning patterns in patients with deficit and nondeficit schizophrenia. Schizophr Bull. 2019;45(1):211221.CrossRefGoogle ScholarPubMed
Planchuelo-Gómez, Á, Lubeiro, A, Núñez-Novo, P, Gomez-Pilar, J, de Luis-García, R, Del Valle, P, Martín-Santiago, Ó, Pérez-Escudero, A, Molina, V. Identificacion of MRI-based psychosis subtypes: Replication and refinement. Prog Neuropsychopharmacol Biol Psychiatry. 2020;100:109907.CrossRefGoogle ScholarPubMed
Schmid, RS, Anton, ES. Role of integrins in the development of the cerebral cortex. Cereb Cortex. 2003;13(3):219224.CrossRefGoogle ScholarPubMed
Cousin, B, Leloup, C, Pénicaud, L, Price, J. Developmental changes in integrin beta-subunits in rat cerebral cortex. Neurosci Lett. 1997;234(2-3):161165.CrossRefGoogle ScholarPubMed
Pinkstaff, JK, Detterich, J, Lynch, G, Gall, C. Integrin subunit gene expression is regionally differentiated in adult brain. J Neurosci. 1999; 19(5):15411556.CrossRefGoogle ScholarPubMed
Nishimura, SL, Boylen, KP, Einheber, S, Milner, TA, Ramos, DM, Pytela, R. Synaptic and glial localization of the integrin alphavbeta8 in mouse and rat brain. Brain Res. 1998;791(1-2):271282.CrossRefGoogle ScholarPubMed
Graus-Porta, D, Blaess, S, Senften, M, Littlewood-Evans, A, Damsky, C, Huang, Z, Orban, P, Klein, R, Schittny, JC, Müller, U. Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron. 2001;31(3):367379.CrossRefGoogle ScholarPubMed
Milner, R, Campbell, IL. The integrin family of cell adhesion molecules has multiple functions within the CNS. J Neurosci Res. 2002;69(3):286291.CrossRefGoogle ScholarPubMed
Mercado, ML, Nur-e-Kamal, A, Liu, HY, Gross, SR, Movahed, R, Meiners, S. Neurite outgrowth by the alternatively spliced region of human tenascin-C is mediated by neuronal alpha7beta1 integrin. J Neurosci. 2004;24(1):238247.CrossRefGoogle ScholarPubMed
Shi, Y, Ethell, IM. Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J Neurosci. 2006;26(6):18131822.CrossRefGoogle ScholarPubMed
Ning, L, Tian, L, Smirnov, S, Vihinen, H, Llano, O, Vick, K, Davis, RL, Rivera, C, Gahmberg, CG. Interactions between ICAM-5 and β1 integrins regulate neuronal synapse formation. J Cell Sci. 2013;126(Pt 1):7789.CrossRefGoogle ScholarPubMed
Swinehart, BD, Bland, KM, Holley, ZL, Lopuch, AJ, Casey, ZO, Handwerk, CJ, Vidal, GS. Integrin β3 organizes dendritic complexity of cerebral cortical pyramidal neurons along a tangential gradient. Mol Brain. 2020;13(1):168.CrossRefGoogle ScholarPubMed
Song, G, Luo, BH. Atypical structure and function of integrin α(V) β(8). J Cell Physiol. 2021;236(7):48744887.CrossRefGoogle Scholar
Luo, BH, Carman, CV, Springer, TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25:619647.CrossRefGoogle ScholarPubMed
Yonekawa, K, Harlan, JM. Targeting leukocyte integrins in human diseases. J Leukoc Biol. 2005;77(2):129140.CrossRefGoogle ScholarPubMed
Altorki, T, Muller, W, Brass, A, Cruickshank, S. The role of β(2) integrin in dendritic cell migration during infection. BMC Immunol. 2021;22(1):2.CrossRefGoogle ScholarPubMed
Li, D, Peng, J, Li, T, Liu, Y, Chen, M, Shi, X. Itgb3-integrin-deficient mice may not be a sufficient model for patients with Glanzmann thrombasthenia. Mol Med Rep. 2021;23(6):449.CrossRefGoogle Scholar
Murgia, C, Blaikie, P, Kim, N, Dans, M, Petrie, HT, Giancotti, FG. Cell cycle and adhesion defects in mice carrying a targeted deletion of the integrin beta4 cytoplasmic domain. EMBO J. 1998;17(14):39403951.CrossRefGoogle ScholarPubMed
Colburn, ZT, Jones, JC. α(6)β(4) integrin regulates the collective migration of epithelial cells. Am J Respir Cell Mol Biol. 2017;56(4):443452.CrossRefGoogle Scholar
Nandrot, EF, Anand, M, Sircar, M, Finnemann, SC. Novel role for alphavbeta5-integrin in retinal adhesion and its diurnal peak. Am J Physiol Cell Physiol. 2006;290(4):C1256C1262.CrossRefGoogle ScholarPubMed
Nandrot, EF, Kim, Y, Brodie, SE, Huang, X, Sheppard, D, Finnemann, SC. Loss of synchronized retinal phagocytosis and age-related blindness in mice lacking alphavbeta5 integrin. J Exp Med. 2004;200(12):15391545.CrossRefGoogle ScholarPubMed
Xie, Y, McElwee, KJ, Owen, GR, Häkkinen, L, Larjava, HS. Integrin β6-deficient mice show enhanced keratinocyte proliferation and retarded hair follicle regression after depilation. J Invest Dermatol, 2012;132(3 Pt 1):547555.CrossRefGoogle ScholarPubMed
Hogmalm, A, Sheppard, D, Lappalainen, U, Bry, K. beta6 Integrin subunit deficiency alleviates lung injury in a mouse model of bronchopulmonary dysplasia. Am J Respir Cell Mol Biol. 2010;43(1):8898.CrossRefGoogle Scholar
Artis, D, Humphreys, NE, Potten, CS, Wagner, N, Müller, W, McDermott, JR, Grencis, RK, Else, KJ. Beta7 integrin-deficient mice: delayed leukocyte recruitment and attenuated protective immunity in the small intestine during enteric helminth infection. Eur J Immunol. 2000;30(6):16561664.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Kaemmerer, E, Kuhn, P, Schneider, U, Clahsen, T, Jeon, MK, Klaus, C, Andruszkow, J, Härer, M, Ernst, S, Schippers, A, Wagner, N, Gassler, N. Beta-7 integrin controls enterocyte migration in the small intestine. World J Gastroenterol. 2015;21(6):17591764.CrossRefGoogle ScholarPubMed
Proctor, JM, Zang, K, Wang, D, Wang, R, Reichardt, LF. Vascular development of the brain requires beta8 integrin expression in the neuroepithelium. J Neurosci. 2005;25(43):99409948.CrossRefGoogle ScholarPubMed
Berk, M, Plein, H, Csizmadia, T. Supersensitive platelet glutamate receptors as a possible peripheral marker in schizophrenia. Int Clin Psychopharmacol. 1999;14(2):119122.CrossRefGoogle ScholarPubMed
Kim, JS, Kornhuber, HH, Schmid-Burgk, W, Holzmüller, B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett. 1980;20(3):379382.CrossRefGoogle Scholar
Tsai, G, Passani, LA, Slusher, BS, Carter, R, Baer, L, Kleinman, JE, Coyle, JT. Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch Gen Psychiatry. 1995;52(10):829836.CrossRefGoogle ScholarPubMed
Howes, OD, Kapur, S. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull. 2009;35(3):549562.CrossRefGoogle ScholarPubMed
Javitt, DC, Spencer, KM, Thaker, GK, Winterer, G, Hajós, M. Neurophysiological biomarkers for drug development in schizophrenia. Nat Rev Drug Discov. 2008;7(1):6883.CrossRefGoogle ScholarPubMed
Brennand, KJ, Simone, A, Jou, J, Gelboin-Burkhart, C, Tran, N, Sangar, S, Li, Y, Mu, Y, Chen, G, Yu, D, McCarthy, S, Sebat, J, Gage, FH. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 2011;473(7346):221225.CrossRefGoogle ScholarPubMed
Zamanpoor, M. Schizophrenia in a genomic era: a review from the pathogenesis, genetic and environmental etiology to diagnosis and treatment insights. Psychiatr Genet. 2020;30(1):19.CrossRefGoogle Scholar
Balu, DT. The NMDA receptor and schizophrenia: from pathophysiology to treatment. Adv Pharmacol. 2016;76:351382.CrossRefGoogle ScholarPubMed
Vinson, PN, Conn, PJ. Metabotropic glutamate receptors as therapeutic targets for schizophrenia. Neuropharmacology. 2012;62(3):14611472.CrossRefGoogle ScholarPubMed
Nicoletti, F, Orlando, R, Di Menna, L, Cannella, M, Notartomaso, S, Mascio, G, Iacovelli, L, Matrisciano, F, Fazio, F, Caraci, F, Copani, A, Battaglia, G, Bruno, V. Targeting mGlu receptors for optimization of antipsychotic activity and disease-modifying effect in schizophrenia. Front Psychiatry. 2019;10:49.CrossRefGoogle ScholarPubMed
Dogra, S, Conn, PJ. Metabotropic glutamate receptors as emerging targets for the treatment of schizophrenia. Mol Pharmacol. 2022;101(5):275285.CrossRefGoogle ScholarPubMed
Jaudon, F, Thalhammer, A, Zentilin, L, Cingolani, LA. CRISPR-mediated activation of autism gene Itgb3 restores cortical network excitability via mGluR5 signaling. Mol Ther Nucleic Acids. 2022;29:462480.CrossRefGoogle ScholarPubMed
Clegg, DO, Wingerd, KL, Hikita, ST, Tolhurst, EC. Integrins in the development, function and dysfunction of the nervous system. Front Biosci. 2003;8:d723d750.CrossRefGoogle ScholarPubMed
Mohn, AR, Gainetdinov, RR, Caron, MG, Koller, BH. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell. 1999;98(4):427436.CrossRefGoogle ScholarPubMed
Lin, B, Arai, AC, Lynch, G, Gall, CM. Integrins regulate NMDA receptor-mediated synaptic currents. J Neurophysiol. 2003;89(5):28742878.CrossRefGoogle ScholarPubMed
Bernard-Trifilo, JA, Kramár, EA, Torp, R, Lin, CY, Pineda, EA, Lynch, G, Gall, CM. Integrin signaling cascades are operational in adult hippocampal synapses and modulate NMDA receptor physiology. J Neurochem. 2005;93(4):834849.CrossRefGoogle ScholarPubMed
Jaudon, F, Thalhammer, A, Cingolani, LA. Integrin adhesion in brain assembly: from molecular structure to neuropsychiatric disorders. Eur J Neurosci. 2021;53(12):38313850.CrossRefGoogle ScholarPubMed
Groc, L, Choquet, D, Stephenson, FA, Verrier, D, Manzoni, OJ, Chavis, P. NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. J Neurosci. 2007;27(38):1016510175.CrossRefGoogle ScholarPubMed
Iafrati, J, Orejarena, MJ, Lassalle, O, Bouamrane, L, Gonzalez-Campo, C, Chavis, P. Reelin, an extracellular matrix protein linked to early onset psychiatric diseases, drives postnatal development of the prefrontal cortex via GluN2B-NMDARs and the mTOR pathway. Mol Psychiatry. 2014;19(4):417426.CrossRefGoogle ScholarPubMed
Lin, CY, Lynch, G, Gall, CM. AMPA receptor stimulation increases alpha5beta1 integrin surface expression, adhesive function and signaling. J Neurochem. 2005;94(2):531546.CrossRefGoogle ScholarPubMed
Cingolani, LA, Thalhammer, A, Yu, LM, Catalano, M, Ramos, T, Colicos, MA, Goda, Y. Activity-dependent regulation of synaptic AMPA receptor composition and abundance by beta3 integrins. Neuron. 2008;58(5):749762.CrossRefGoogle ScholarPubMed
Fossati, G, Pozzi, D, Canzi, A, Mirabella, F, Valentino, S, Morini, R, Ghirardini, E, Filipello, F, Moretti, M, Gotti, C, Annis, DS, Mosher, DF, Garlanda, C, Bottazzi, B, Taraboletti, G, Mantovani, A, Matteoli, M, Menna, E. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin. EMBO J. 2019;38(1):e99529.CrossRefGoogle ScholarPubMed
Birkner, K, Wasser, B, Ruck, T, Thalman, C, Luchtman, D, Pape, K, Schmaul, S, Bitar, L, Krämer-Albers, EM, Stroh, A, Meuth, SG, Zipp, F, Bittner, S. β1-Integrin- and KV1.3 channel-dependent signaling stimulates glutamate release from Th17 cells. J Clin Invest. 2020;130(2):715732.CrossRefGoogle ScholarPubMed
Weiss, LA, Veenstra-Vanderweele, J, Newman, DL, Kim, SJ, Dytch, H, MS, McPeek, Cheng, S, Ober, C, Cook, EH Jr., Abney, M. Genome-wide association study identifies ITGB3 as a QTL for whole blood serotonin. Eur J Hum Genet. 2004;12(11):949954.CrossRefGoogle ScholarPubMed
Weiss, LA, Abney, M, Parry, R, Scanu, AM, Cook, EH Jr., Ober, C. Variation in ITGB3 has sex-specific associations with plasma lipoprotein(a) and whole blood serotonin levels in a population-based sample. Hum Genet. 2005;117(1):8187.CrossRefGoogle Scholar
Weiss, LA, Kosova, G, Delahanty, RJ, Jiang, L, Cook, EH, Ober, C, Sutcliffe, JS. Variation in ITGB3 is associated with whole-blood serotonin level and autism susceptibility. Eur J Hum Genet. 2006;14(8):923931.CrossRefGoogle ScholarPubMed
Napolioni, V, Lombardi, F, Sacco, R, Curatolo, P, Manzi, B, Alessandrelli, R, Militerni, R, Bravaccio, C, Lenti, C, Saccani, M, Schneider, C, Melmed, R, Pascucci, T, Puglisi-Allegra, S, Reichelt, KL, Rousseau, F, Lewin, P, Persico, AM. Family-based association study of ITGB3 in autism spectrum disorder and its endophenotypes. Eur J Hum Genet. 2011;19(3):353359.CrossRefGoogle ScholarPubMed
Coutinho, AM, Sousa, I, Martins, M, Correia, C, Morgadinho, T, Bento, C, Marques, C, Ataíde, A, Miguel, TS, Moore, JH, Oliveira, G, Vicente, AM. Evidence for epistasis between SLC6A4 and ITGB3 in autism etiology and in the determination of platelet serotonin levels. Hum Genet. 2007;121(2):243256.CrossRefGoogle ScholarPubMed
Carneiro, AM, Cook, EH, Murphy, DL, Blakely, RD. Interactions between integrin alphaIIbbeta3 and the serotonin transporter regulate serotonin transport and platelet aggregation in mice and humans. J Clin Invest. 2008;118(4):15441552.CrossRefGoogle ScholarPubMed
Weiss, LA, Ober, C, Cook, EH. ITGB3 shows genetic and expression interaction with SLC6A4. Hum Genet. 2006;120(1):93100.CrossRefGoogle ScholarPubMed
Whyte, A, Jessen, T, Varney, S, Carneiro, AM. Serotonin transporter and integrin beta 3 genes interact to modulate serotonin uptake in mouse brain. Neurochem Int. 2014;73:122126.CrossRefGoogle ScholarPubMed
Mazalouskas, M, Jessen, T, Varney, S, Sutcliffe, JS, Veenstra-Vander Weele, J, Cook, EH Jr., Carneiro, AM. Integrin β3 haploinsufficiency modulates serotonin transport and antidepressant-sensitive behavior in mice. Neuropsychopharmacology. 2015;40(8):20152024.CrossRefGoogle ScholarPubMed
Dohn, MR, Kooker, CG, Bastarache, L, Jessen, T, Rinaldi, C, Varney, S, Mazalouskas, MD, Pan, H, Oliver, KH, Velez Edwards, DR, Sutcliffe, JS, Denny, JC, Carneiro, AMD. The gain-of-function integrin β3 Pro33 variant alters the serotonin system in the mouse brain. J Neurosci. 2017;37(46):1127111284.CrossRefGoogle ScholarPubMed
Gabriele, S, Canali, M, Lintas, C, Sacco, R, Tirindelli, MC, Ricciardello, A, Persico, AM. Evidence that ITGB3 promoter variants increase serotonin blood levels by regulating platelet serotonin transporter trafficking. Hum Mol Genet. 2019;28(7):11531161.CrossRefGoogle ScholarPubMed
Oved, K, Morag, A, Pasmanik-Chor, M, Rehavi, M, Shomron, N, Gurwitz, D. Genome-wide expression profiling of human lymphoblastoid cell lines implicates integrin beta-3 in the mode of action of antidepressants. Transl Psychiatry. 2013;3(10):e313.CrossRefGoogle ScholarPubMed
Turkmen, BA. Yazici, E, Erdogan, DG, Suda, MA, Yazici, AB. BDNF, GDNF, NGF and Klotho levels and neurocognitive functions in acute term of schizophrenia. BMC Psychiatry. 2021;21(1):562.CrossRefGoogle ScholarPubMed
Libman-Sokołowska, M, Drozdowicz, E, Nasierowski, T. BDNF as a biomarker in the course and treatment of schizophrenia. Psychiatr Pol. 2015;49(6):11491158.CrossRefGoogle ScholarPubMed
Chen, DC, Wang, J, Wang, B, Yang, SC, Zhang, CX, Zheng, YL, Li, YL, Wang, N, Yang, KB, Xiu, MH, Kosten, TR, Zhang, XY. Decreased levels of serum brain-derived neurotrophic factor in drug-naïve first-episode schizophrenia: relationship to clinical phenotypes. Psychopharmacology (Berl). 2009;207(3):375380.CrossRefGoogle ScholarPubMed
Ikeda, Y, Yahata, N, Ito, I, Nagano, M, Toyota, T, Yoshikawa, T, Okubo, Y, Suzuki, H. Low serum levels of brain-derived neurotrophic factor and epidermal growth factor in patients with chronic schizophrenia. Schizophr Res. 2008;101(1-3):5866.CrossRefGoogle ScholarPubMed
Jindal, RD, Pillai, AK, Mahadik, SP, Eklund, K, Montrose, DM, Keshavan, MS. Decreased BDNF in patients with antipsychotic naïve first episode schizophrenia. Schizophr Res. 2010;119(1-3):4751.CrossRefGoogle ScholarPubMed
Toyooka, K, Asama, K, Watanabe, Y, Muratake, T, Takahashi, M, Someya, T, Nawa, H. Decreased levels of brain-derived neurotrophic factor in serum of chronic schizophrenic patients. Psychiatry Res. 2002;110(3):249257.CrossRefGoogle ScholarPubMed
Vinogradov, S, Fisher, M, Holland, C, Shelly, W, Wolkowitz, O, Mellon, SH. Is serum brain-derived neurotrophic factor a biomarker for cognitive enhancement in schizophrenia? Biol Psychiatry. 2009;66(6):549553.CrossRefGoogle ScholarPubMed
Gama, CS, Andreazza, AC, Kunz, M, Berk, M, Belmonte-de-Abreu, PS, Kapczinski, F. Serum levels of brain-derived neurotrophic factor in patients with schizophrenia and bipolar disorder. Neurosci Lett. 2007;420(1):4548.CrossRefGoogle ScholarPubMed
Reis, HJ, Nicolato, R, Barbosa, IG, Teixeira do Prado, PH, Romano-Silva, MA, Teixeira, AL. Increased serum levels of brain-derived neurotrophic factor in chronic institutionalized patients with schizophrenia. Neurosci Lett. 2008;439(2):157159.CrossRefGoogle ScholarPubMed
Favalli, G, Li, J, Belmonte-de-Abreu, P, Wong, AH, Daskalakis, ZJ. The role of BDNF in the pathophysiology and treatment of schizophrenia. J Psychiatr Res. 2012;46(1):111.CrossRefGoogle ScholarPubMed
Pandya, CD, Kutiyanawalla, A, Pillai, A. BDNF-TrkB signaling and neuroprotection in schizophrenia. Asian J Psychiatr. 2013;6(1):2228.CrossRefGoogle ScholarPubMed
Peng, S, Li, W, Lv, L, Zhang, Z, Zhan, X. BDNF as a biomarker in diagnosis and evaluation of treatment for schizophrenia and depression. Discov Med. 2018;26(143):127136.Google ScholarPubMed
Singh, J, Verma, R, Raghav, R, Sarkar, S, Sood, M, Jain, R. Brain-derived neurotrophic factor (BDNF) levels in first-episode schizophrenia and healthy controls: A comparative study. Asian J Psychiatr. 2020;54:102370.CrossRefGoogle ScholarPubMed
Li, S, Chen, D, Xiu, M, Li, J, Zhang, XY. Diabetes mellitus, cognitive deficits and serum BDNF levels in chronic patients with schizophrenia: A case-control study. J Psychiatr Res. 2021;134:3947.CrossRefGoogle ScholarPubMed
Hori, H, Yoshimura, R, Katsuki, A, Atake, K, Igata, R, Konishi, Y, Nakamura, J. Relationships between serum brain-derived neurotrophic factor, plasma catecholamine metabolites, cytokines, cognitive function and clinical symptoms in Japanese patients with chronic schizophrenia treated with atypical antipsychotic monotherapy. World J Biol Psychiatry. 2017;18(5):401408.CrossRefGoogle ScholarPubMed
Yang, Y, Liu, Y, Wang, G, Hei, G, Wang, X, Li, R, Li, L, Wu, R, Zhao, J. Brain-derived neurotrophic factor is associated with cognitive impairments in first-episode and chronic schizophrenia. Psychiatry Res. 2019;273:528536.CrossRefGoogle ScholarPubMed
Gall, CM, Pinkstaff, JK, Lauterborn, JC, Xie, Y, Lynch, G. Integrins regulate neuronal neurotrophin gene expression through effects on voltage-sensitive calcium channels. Neuroscience. 2003;118(4):925940.CrossRefGoogle ScholarPubMed
Murase, S, Owens, DF, McKay, RD. In the newborn hippocampus, neurotrophin-dependent survival requires spontaneous activity and integrin signaling. J Neurosci. 2011;31(21):77917800.CrossRefGoogle ScholarPubMed
Cao, JP, Yu, JK, Li, C, Sun, Y, Yuan, HH, Wang, HJ, Gao, DS. Integrin beta1 is involved in the signaling of glial cell line-derived neurotrophic factor. J Comp Neurol. 2008;509(2):203210.CrossRefGoogle ScholarPubMed
Yokomaku, D, Numakawa, T, Numakawa, Y, Suzuki, S, Matsumoto, T, Adachi, N, Nishio, C, Taguchi, T, Hatanaka, H. Estrogen enhances depolarization-induced glutamate release through activation of phosphatidylinositol 3-kinase and mitogen-activated protein kinase in cultured hippocampal neurons. Mol Endocrinol. 2003;17(5):831844.CrossRefGoogle ScholarPubMed
Smejkalova, T, Woolley, CS. Estradiol acutely potentiates hippocampal excitatory synaptic transmission through a presynaptic mechanism. J Neurosci. 2010;30(48):1613716148.CrossRefGoogle ScholarPubMed
Oberlander, JG, Woolley, CS. 17β-estradiol acutely potentiates glutamatergic synaptic transmission in the hippocampus through distinct mechanisms in males and females. J Neurosci. 2016;36(9):26772690.CrossRefGoogle ScholarPubMed
Wang, W, Kantorovich, S, Babayan, AH, Hou, B, Gall, CM, Lynch, G. Estrogen’s effects on excitatory synaptic transmission entail integrin and TrkB transactivation and depend upon β1-integrin function. Neuropsychopharmacology. 2016;41(11):27232732.CrossRefGoogle ScholarPubMed
Nishimura, K, Doi, D, Samata, B, Murayama, S, Tahara, T, Onoe, H, Takahashi, J. Estradiol facilitates functional integration of iPSC-derived dopaminergic neurons into striatal neuronal circuits via activation of integrin α5β1. Stem Cell Rep. 2016;6(4):511524.CrossRefGoogle ScholarPubMed
Rune, GM, Frotscher, M. Neurosteroid synthesis in the hippocampus: role in synaptic plasticity. Neuroscience. 2005;136(3):833842.CrossRefGoogle ScholarPubMed
Liu, F, Day, M, Muñiz, LC, Bitran, D, Arias, R, Revilla-Sanchez, R, Grauer, S, Zhang, G, Kelley, C, Pulito, V, Sung, A, Mervis, RF, Navarra, R, Hirst, WD, Reinhart, PH, Marquis, KL, Moss, SJ, Pangalos, MN, Brandon, NJ. Activation of estrogen receptor-beta regulates hippocampal synaptic plasticity and improves memory. Nat Neurosci. 2008;11(3):334343.CrossRefGoogle ScholarPubMed
Spencer-Segal, JL, Tsuda, MC, Mattei, L, Waters, EM, Romeo, RD, Milner, TA, BS, McEwen, Ogawa, S. Estradiol acts via estrogen receptors alpha and beta on pathways important for synaptic plasticity in the mouse hippocampal formation. Neuroscience. 2012;202:131146.CrossRefGoogle ScholarPubMed
Lu, Y, Sareddy, GR, Wang, J, Wang, R, Li, Y, Dong, Y, Zhang, Q, Liu, J, O’Connor, JC, Xu, J, Vadlamudi, RK, Brann, DW. Neuron-Derived estrogen regulates synaptic plasticity and memory. J Neurosci. 2019;39(15):27922809.CrossRefGoogle ScholarPubMed
Clements, L, Harvey, J. Activation of oestrogen receptor α induces a novel form of LTP at hippocampal temporoammonic-CA1 synapses. Br J Pharmacol. 2020;177(3):642655.CrossRefGoogle ScholarPubMed
Belcher, SM, Zsarnovszky, A. Estrogenic actions in the brain: estrogen, phytoestrogens, and rapid intracellular signaling mechanisms. J Pharmacol Exp Ther. 2001;299(2):408414.Google ScholarPubMed
Huang, X, Zhu, LL, Zhao, T, Wu, LY, Wu, KW, Schachner, M, Xiao, ZC, Fan, M. CHL1 negatively regulates the proliferation and neuronal differentiation of neural progenitor cells through activation of the ERK1/2 MAPK pathway. Mol Cell Neurosci. 2011;46(1):296307.CrossRefGoogle ScholarPubMed
Schmid, RS, Maness, PF. L1 and NCAM adhesion molecules as signaling coreceptors in neuronal migration and process outgrowth. Curr Opin Neurobiol. 2008;18(3):245250.CrossRefGoogle ScholarPubMed
Chen, S, Mantei, N, Dong, L, Schachner, M. Prevention of neuronal cell death by neural adhesion molecules L1 and CHL1. J Neurobiol. 1999;38(3):428439.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Braus, DF. Temporal perception and organisation, neuronal synchronisation and schizophrenia. Fortschr Neurol Psychiatr. 2002;70(11):591600.CrossRefGoogle ScholarPubMed
Kimura, B. Disturbance of timing and selfhood in schizophrenia. Seishin Shinkeigaku Zasshi. 2003;105(6):729732.Google ScholarPubMed
Penney, TB, Meck, WH, Roberts, SA, Gibbon, J, Erlenmeyer-Kimling, L. Interval-timing deficits in individuals at high risk for schizophrenia. Brain Cogn. 2005;58(1):109118.CrossRefGoogle ScholarPubMed
Volz, HP, Nenadic, I, Gaser, C, Rammsayer, T, Häger, F, Sauer, H. Time estimation in schizophrenia: an fMRI study at adjusted levels of difficulty. Neuroreport. 2001;12(2):313316.CrossRefGoogle ScholarPubMed
Herzog, MH, Brand, A. Pitting temporal against spatial integration in schizophrenic patients. Psychiatry Res. 2009;168(1):110.CrossRefGoogle ScholarPubMed
Velasques, B, Machado, S, Paes, F, Cunha, M, Sanfim, A, Budde, H, Cagy, M, Anghinah, R, Basile, LF, Piedade, R, Ribeiro, P. Sensorimotor integration and psychopathology: motor control abnormalities related to psychiatric disorders. World J Biol Psychiatry. 2011;12(8):560573.CrossRefGoogle ScholarPubMed
Buhusi, M, Scripa, I, Williams, CL, Buhusi, CV. Impaired interval timing and spatial-temporal integration in mice deficient in CHL1, a gene associated with schizophrenia. Timing Time Percept. 2013;1(1):2138.CrossRefGoogle ScholarPubMed
Shaltout, TE, Alali, KA, Bushra, S, Alkaseri, AM, Jose, ED, Al-Khainji, M, Saleh, R, Salama Dahir, A, Shaltout, H, Al-Abdullah, M, Rizk, NM. Significant association of close homologue of L1 gene polymorphism rs2272522 with schizophrenia in Qatar. Asia Pac Psychiatry. 2013;5(1):1723.CrossRefGoogle ScholarPubMed
Buhusi, M, Obray, D, Guercio, B, Bartlett, MJ, Buhusi, CV. Chronic mild stress impairs latent inhibition and induces region-specific neural activation in CHL1-deficient mice, a mouse model of schizophrenia. Behav Brain Res. 2017;333:18.CrossRefGoogle ScholarPubMed
Ren, J, Zhao, T, Xu, Y, Ye, H. Interaction between DISC1 and CHL1 in regulation of neurite outgrowth. Brain Res. 2016;1648(Pt A):290297.CrossRefGoogle ScholarPubMed
Buhusi, M, Midkiff, BR, Gates, AM, Richter, M, Schachner, M, Maness, PF. Close homolog of L1 is an enhancer of integrin-mediated cell migration. J Biol Chem. 2003;278(27):2502425031.CrossRefGoogle ScholarPubMed
Probst-Schendzielorz, K, Scholl, C, Efimkina, O, Ersfeld, E, Viviani, R, Serretti, A, Fabbri, C, Gurwitz, D, Lucae, S, Ising, M, Paul, AM, Lehmann, ML, Steffens, M, Crisafulli, C, Calabrò, M, Holsboer, F, Stingl, J. CHL1, ITGB3 and SLC6A4 gene expression and antidepressant drug response: results from the Munich Antidepressant Response Signature (MARS) study. Pharmacogenomics. 2015;16(7):689701.CrossRefGoogle ScholarPubMed
Impagnatiello, F, Guidotti, AR, Pesold, C, Dwivedi, Y, Caruncho, H, Pisu, MG, Uzunov, DP, Smalheiser, NR, Davis, JM, Pandey, GN, Pappas, GD, Tueting, P, Sharma, RP, Costa, E. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci U S A. 1998;95(26):1571815723.CrossRefGoogle ScholarPubMed
Fatemi, SH, Earle, JA, McMenomy, T. Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry. 2000;5(6):654–63, 571.CrossRefGoogle ScholarPubMed
Guidotti, A, Auta, J, Davis, JM, Di-Giorgi-Gerevini, V, Dwivedi, Y, Grayson, DR, Impagnatiello, F, Pandey, G, Pesold, C, Sharma, R, Uzunov, D, Costa, E. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry. 2000;57(11):10611069.CrossRefGoogle ScholarPubMed
Guidotti, A, Grayson, DR, Caruncho, HJ. Epigenetic RELN dysfunction in schizophrenia and related neuropsychiatric disorders. Front Cell Neurosci. 2016;10:89.CrossRefGoogle ScholarPubMed
Berretta, S. Extracellular matrix abnormalities in schizophrenia. Neuropharmacology. 2012;62(3):15841597.CrossRefGoogle ScholarPubMed
Sethi, MK, Zaia, J. Extracellular matrix proteomics in schizophrenia and Alzheimer’s disease. Anal Bioanal Chem. 2017;409(2):379394.CrossRefGoogle ScholarPubMed
Lubbers, BR, Smit, AB, Spijker, S, van den Oever, MC. Neural ECM in addiction, schizophrenia, and mood disorder. Prog Brain Res. 2014;214:263284.CrossRefGoogle ScholarPubMed
Sekine, K, Kawauchi, T, Kubo, K, Honda, T, Herz, J, Hattori, M, Kinashi, T, Nakajima, K. Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin α5β1. Neuron. 2012;76(2):353369.CrossRefGoogle ScholarPubMed
Dulabon, L, Olson, EC, Taglienti, MG, Eisenhuth, S, McGrath, B, Walsh, CA, Kreidberg, JA, Anton, ES. Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron. 2000;27(1):3344.CrossRefGoogle ScholarPubMed
Hoe, HS, Lee, KJ, Carney, RS, Lee, J, Markova, A, Lee, JY, Howell, BW, Hyman, BT, Pak, DT, Bu, G, Rebeck, GW. Interaction of reelin with amyloid precursor protein promotes neurite outgrowth. J Neurosci. 2009;29(23):74597473.CrossRefGoogle ScholarPubMed
Folsom, TD, Fatemi, SH. The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology. 2013;68:122135.CrossRefGoogle ScholarPubMed
Nagy, V, Bozdagi, O, Matynia, A, Balcerzyk, M, Okulski, P, Dzwonek, J, Costa, RM, Silva, AJ, Kaczmarek, L, Huntley, GW. Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci. 2006;26(7):19231934.CrossRefGoogle ScholarPubMed
Bozdagi, O, Nagy, V, Kwei, KT, Huntley, GW. In vivo roles for matrix metalloproteinase-9 in mature hippocampal synaptic physiology and plasticity. J Neurophysiol. 2007;98(1):334344.CrossRefGoogle ScholarPubMed
Okulski, P, Jay, TM, Jaworski, J, Duniec, K, Dzwonek, J, Konopacki, FA, Wilczynski, GM, Sánchez-Capelo, A, Mallet, J, Kaczmarek, L. TIMP-1 abolishes MMP-9-dependent long-lasting long-term potentiation in the prefrontal cortex. Biol Psychiatry. 2007;62(4):359362.CrossRefGoogle ScholarPubMed
Egan, MF, Weinberger, DR. Neurobiology of schizophrenia. Curr Opin Neurobiol. 1997;7(5):701707.CrossRefGoogle ScholarPubMed
Kalia, M. Neurobiological basis of depression: an update. Metabolism. 2005;54(5 Suppl 1):2427.CrossRefGoogle ScholarPubMed
Bruno, MA, Mufson, EJ, Wuu, J, Cuello, AC. Increased matrix metalloproteinase 9 activity in mild cognitive impairment. J Neuropathol Exp Neurol. 2009;68(12):13091318.CrossRefGoogle ScholarPubMed
Rybakowski, JK. Matrix metalloproteinase-9 (MMP9)-a mediating enzyme in cardiovascular disease, cancer, and neuropsychiatric disorders. Cardiovasc Psychiatry Neurol. 2009;2009:904836.CrossRefGoogle ScholarPubMed
Rybakowski, JK, Skibinska, M, Kapelski, P, Kaczmarek, L, Hauser, J. Functional polymorphism of the matrix metalloproteinase-9 (MMP-9) gene in schizophrenia. Schizophr Res. 2009;109(1-3):9093.CrossRefGoogle ScholarPubMed
Wang, XB, Bozdagi, O, Nikitczuk, JS, Zhai, ZW, Zhou, Q, Huntley, GW. Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc Natl Acad Sci U S A. 2008;105(49):1952019525.CrossRefGoogle ScholarPubMed
Michaluk, P, Mikasova, L, Groc, L, Frischknecht, R, Choquet, D, Kaczmarek, L. Matrix metalloproteinase-9 controls NMDA receptor surface diffusion through integrin beta1 signaling. J Neurosci. 2009;29(18):60076012.CrossRefGoogle ScholarPubMed