Skip to main content Accessibility help

Using fMRI to Study the Neural Correlates of Virtual Reality Analgesia

  • Hunter G. Hoffman, Todd L. Richards, Aric R. Bills, Trevor Van Oostrom, Jeff Magula, Eric J. Seibel and Sam R. Sharar...


Excessive pain during medical procedures, such as burn wound dressing changes, is a widespread medical problem and is especially challenging for children. This article describes the rationale behind virtual reality (VR) pain distraction, a new non-pharmacologic adjunctive analgesia, and gives a brief summary of empirical studies exploring whether VR reduces clinical procedural pain. Results indicate that patients using VR during painful medical procedures report large reductions in subjective pain. A neuroimaging study measuring the neural correlates of VR analgesia is described in detail. This functional magnetic resonance imaging pain study in healthy volunteers shows that the large drops in subjective pain ratings during VR are accompanied by large drops in pain-related brain activity. Together the clinical and laboratory studies provide converging evidence that VR distraction is a promising new non-pharmacologic pain control technique.


Corresponding author

Please direct all correspondence to: Hunter G. Hoffman, PhD,Human Interface Technology Laboratory, Box 352142, University of Washington, Seattle, WA, 98195-2142; E-mail:


Hide All
1.Carrougher, GJ, Ptacek, JT, Sharar, SR, et al.Comparison of patient satisfaction and self-reports of pain in adult burn-injured patients. J Burn Care Rehabil. 2003;24:18.
2.Cherny, N, Ripamonti, C, Pereira, J, et al.Strategies to manage the adverse effects of oral morphine: an evidence-based report. J Clin Oncol. 2001;19:25422554.
3.Melzack, R. The tragedy of needless pain. Sci Amer. 1990;262:2733.
4.Melzack, R, Wall, PD. Pain mechanisms: a new theory. Science. 1965;150:971979.
5.Hoffman, HG. Virtual-reality therapy. Sci Amer. 2004;291:5865.
6.Hoffman, HG, Patterson, DR, Magula, J, et al.Water-friendly virtual reality pain control during wound care. J Clin Psychol. 2004;60:189195.
7.Hoffman, HG, Doctor, JN, Patterson, DR, Carrougher, GJ, Furness, TA 3rd. Use of virtual reality for adjunctive treatment of adolescent burn pain during wound care: a case report. Pain. 2000;85:305309.
8.Hoffman, HG, Patterson, DR, Carrougher, GJ, Sharar, SR. The effectiveness of virtual reality based pain control with multiple treatments. Clin J Pain. 2001;17:229235.
9.Hoffman, HG, Patterson, DR, Carrougher, GJ. Use of virtual reality for adjunctive treatment of adult burn pain during physical therapy: a controlled study. Clin J Pain. 2000;16:244250.
10.Das, DA, Grimmer, KA, Sparnon, AL, McRae, SE, Thomas, BH. The efficacy of playing a virtual reality game in modulating pain for children with acute burn injuries: a randomized controlled trial [ISRCTN87413556]. BMC Pediatr. 2005;5:1.
11.Hoffman, HG, Patterson, DR, Carrougher, GJ, et al.The effectiveness of virtual reality pain control with multiple treatments of longer durations: a case study. Int J Hum Comput Interact. 2001;13:112.
12.Bushnell, MC, Duncan, GH, Hofbauer, RK, Ha, B, Chen, JI, Carrier, B. Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci U S A. 1999;96:77057709.
13.Rogers, R, Wise, RG, Painter, DJ, Longe, SE, Tracey, I. An investigation to dissociate the analgesic and anesthetic of ketamine using functional magnetic resonance imaging. Anesthesiology. 2004;100:292301.
14.Wise, RG, Rogers, R, Painter, D, et al.Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage. 2002;16:9991014.
15.Porro, CA. Functional imaging and pain: behavior, perception, and modulation. Neuroscientist. 2003;9:354369.
16.Bantick, SJ, Wise, RG, Ploghaus, A, Clare, S, Smith, SM, Tracey, I. Imaging how attention modulates pain in humans using functional MRI. Brain. 2002;125(pt 2):310319.
17.Derbyshire, SW, Jones, AK, Gyulai, F, Clark, S, Townsend, D, Firestone, LL. Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain. 1997;73:431435.
18.Nakata, H, Inui, K, Wasaka, T, et al.Movements modulate cortical activity evoked by noxious stimulation. Pain. 2004;107:9198.
19.Rainville, P, Duncan, GH, Price, DD, Carrier, B, Bushnell, MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997;277:968971.
20.Hofbauer, RK, Rainville, P, Duncan, GH, Bushnell, MC. Cortical representation of the sensory dimension of pain. J Neurophysiol. 2001;86:402411.
21.Hoffman, HG, Richards, T, Coda, B, Richards, A, Sharar, SR. The illusion of presence in immersive virtual reality during an fMRI brain scan. Cyberpsychol Behav. 2003;6:127131.
22.Hoffman, HG, Richards, TL, Coda, B, et al.Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI. Neuroreport. 2004;15:12451248.
23.Hoffman, HG, Garcia-Palacios, A, Patterson, DR, Jensen, M, Furness, T 3rd, Ammons, WF Jr.The effectiveness of virtual reality for dental pain control: a case study. Cyberpsychol Behav. 2001;4:527535.
24.Wright, JL, Hoffman, HG, Sweet, RM. Virtual reality as an adjunctive pain control during transurethral microwave thermotherapy. Urology. 2005;66:1320.
25.Steele, EB, Grimmer, K, Thomas, B, Mulley, B, Fulton, I, Hoffman, H. Virtual reality as a pediatric pain modulation technique: a case study. Cyberpsychol Behav 2003;6:633638.

Using fMRI to Study the Neural Correlates of Virtual Reality Analgesia

  • Hunter G. Hoffman, Todd L. Richards, Aric R. Bills, Trevor Van Oostrom, Jeff Magula, Eric J. Seibel and Sam R. Sharar...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.