Skip to main content

3-Connected Cores In Random Planar Graphs


The study of the structural properties of large random planar graphs has become in recent years a field of intense research in computer science and discrete mathematics. Nowadays, a random planar graph is an important and challenging model for evaluating methods that are developed to study properties of random graphs from classes with structural side constraints.

In this paper we focus on the structure of random 2-connected planar graphs regarding the sizes of their 3-connected building blocks, which we call cores. In fact, we prove a general theorem regarding random biconnected graphs from various classes. If Bn is a graph drawn uniformly at random from a suitable class of labelled biconnected graphs, then we show that with probability 1 − o(1) as n → ∞, Bn belongs to exactly one of the following categories: (i)

either there is a unique giant core in Bn, that is, there is a 0 < c = c() < 1 such that the largest core contains ~ cn vertices, and every other core contains at most nα vertices, where 0 < α = α() < 1;


or all cores of Bn contain O(logn) vertices.

Moreover, we find the critical condition that determines the category to which Bn belongs, and also provide sharp concentration results for the counts of cores of all sizes between 1 and n. As a corollary, we obtain that a random biconnected planar graph belongs to category (i), where in particular c = 0.765. . . and α = 2/3.

Hide All
[1]Bender, E. A., Gao, Z. and Wormald, N. C. (2002) The number of 2-connected planar graphs. Electron. J. Combin. 9 #43.
[2]Bernasconi, N., Panagiotou, K. and Steger, A. (2008) On properties of random dissections and triangulations. In Proc. 19th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA '08), pp. 132–141.
[3]Bodirsky, M., Giménez, O., Kang, M. and Noy, M. (2005) On the number of series parallel and outerplanar graphs. In 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), Vol. AE of DMTCS Proceedings, pp. 383–388.
[4]Denise, A., Vasconcellos, M. and Welsh, D. J. A. (1996) The random planar graph. Congress. Numer. 113 6179.
[5]Drmota, M. (2009) Random Trees: An Interplay between Combinatorics and Probability, Springer.
[6]Duchon, P., Flajolet, P., Louchard, G. and Schaeffer, G. (2004) Boltzmann samplers for the random generation of combinatorial structures. Combin. Probab. Comput. 13 577625.
[7]Flajolet, F. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge University Press.
[8]Gerke, S., Giménez, O. and Weissl, A. (2008) On the number of graphs not containing K 3,3 as a minor. Electron. J. Combin. 15 R114.
[9]Giménez, O. and Noy, M. (2009) Asymptotic enumeration and limit laws of planar graphs. J. Amer. Math. Soc. 22 309329.
[10]Giménez, O., Noy, M. and Rué, J. (2009) Graph classes with given 3-connected components: asymptotic enumeration and random graphs. Manuscript, available at:
[11]Janson, S., Łuczak, T. and Ruciński, A. (2000) Random Graphs, Wiley.
[12]McDiarmid, C., Steger, A. and Welsh, D. (2005) Random planar graphs. J. Combin. Theory Ser. B 93 187205.
[13]Panagiotou, K. and Steger, A. (2009) Maximal biconnected subgraphs of random planar graphs. In Proc. 20th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA '09), pp. 432–440.
[14]Trakhtenbrot, B. A. (1958) Towards a theory of non-repeating contact schemes. Trudi Mat. Inst. Akad. Nauk SSSR 51 226269.
[15]Tutte, W. T. (1966) Connectivity in Graphs, University of Toronto Press.
[16]Walsh, T. R. S. (1982) Counting labelled 3-connected and homeomorphically irreducible 2-connected graphs. J. Combin. Theory Ser. B 32 111.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed