Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-b9rrs Total loading time: 0.317 Render date: 2022-11-29T21:34:18.978Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Convergence Theorems for Some Layout Measures on Random Lattice and Random Geometric Graphs

Published online by Cambridge University Press:  09 April 2001

JOSEP DÍAZ
Affiliation:
Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Campus Nord C6, C. Jordi Girona 1–3, 08034 Barcelona, Spain (e-mail: diaz@lsi.upc.es, jpetit@lsi.upc.es, mjserna@lsi.upc.es)
MATHEW D. PENROSE
Affiliation:
Department of Mathematical Sciences, University of Durham, South Road, Durham DH1 3LE, England (e-mail: Mathew.Penrose@durham.ac.uk)
JORDI PETIT
Affiliation:
Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Campus Nord C6, C. Jordi Girona 1–3, 08034 Barcelona, Spain (e-mail: diaz@lsi.upc.es, jpetit@lsi.upc.es, mjserna@lsi.upc.es)
MARÍA SERNA
Affiliation:
Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Campus Nord C6, C. Jordi Girona 1–3, 08034 Barcelona, Spain (e-mail: diaz@lsi.upc.es, jpetit@lsi.upc.es, mjserna@lsi.upc.es)

Abstract

This work deals with convergence theorems and bounds on the cost of several layout measures for lattice graphs, random lattice graphs and sparse random geometric graphs. Specifically, we consider the following problems: Minimum Linear Arrangement, Cutwidth, Sum Cut, Vertex Separation, Edge Bisection and Vertex Bisection. For full square lattices, we give optimal layouts for the problems still open. For arbitrary lattice graphs, we present best possible bounds disregarding a constant factor. We apply percolation theory to the study of lattice graphs in a probabilistic setting. In particular, we deal with the subcritical regime that this class of graphs exhibits and characterize the behaviour of several layout measures in this space of probability. We extend the results on random lattice graphs to random geometric graphs, which are graphs whose nodes are spread at random in the unit square and whose edges connect pairs of points which are within a given distance. We also characterize the behaviour of several layout measures on random geometric graphs in their subcritical regime. Our main results are convergence theorems that can be viewed as an analogue of the Beardwood, Halton and Hammersley theorem for the Euclidean TSP on random points in the unit square.

Type
Research Article
Copyright
2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
31
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Convergence Theorems for Some Layout Measures on Random Lattice and Random Geometric Graphs
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Convergence Theorems for Some Layout Measures on Random Lattice and Random Geometric Graphs
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Convergence Theorems for Some Layout Measures on Random Lattice and Random Geometric Graphs
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *