No CrossRef data available.
Published online by Cambridge University Press: 12 September 2008
A connection is made between the theory of ergodicity and the expected complexity of string searching. In particular, a substring search algorithm is introduced which, when applied to searching in text that has been produced by an appropriate stationary ergodic source, has an expected running time of O((N/m + m)logm), for a text string of length N and search string of length m. Similar expected complexity results have been obtained before, but the analysis is performed in a significantly more general framework, which models with greater accuracy the statistics of many types of strings, including natural language. The analysis also sheds light on the performance of the Boyer-Moore algorithm and the Sunday algorithm when applied to natural language.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.