Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-md8df Total loading time: 0.24 Render date: 2021-12-05T12:29:03.205Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

On a Square Packing Problem

Published online by Cambridge University Press:  25 April 2002

S. BOUCHERON
Affiliation:
LRI, UMR 8623 CNRS, Bât. 490, Université Paris-Sud, 91405 Orsay cedex, France (e-mail: bouchero@lri.fr)
W. FERNANDEZ de la VEGA
Affiliation:
LRI, UMR 8623 CNRS, Bât. 490, Université Paris-Sud, 91405 Orsay cedex, France (e-mail: bouchero@lri.fr)

Abstract

An instance of the square packing problem consists of n squares with independently, uniformly distributed side-lengths and independently, uniformly distributed locations on the unit d-dimensional torus. A packing is a maximum family of pairwise disjoint squares. The one-dimensional version of the problem is the classical random interval packing problem. This paper deals with the asymptotic behaviour of packings as n tends to infinity while d = 2. Coffman, Lueker, Spencer and Winkler recently proved that the average size of packing is Θ(nd/(d+1)). Using partitioning techniques, sub-additivity and concentration of measure arguments, we show first that, after normalization by n2/3, the size of two-dimensional square packings tends in probability toward a genuine limit γ. Straightforward concentration arguments show that large fluctuations of order n2/3 should have probability vanishing exponentially fast with n2/3. Even though γ remains unknown, using a change of measure argument we show that this upper bound on tail probabilities is qualitatively correct.

Type
Research Article
Copyright
2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On a Square Packing Problem
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On a Square Packing Problem
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On a Square Packing Problem
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *