Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-fv4mn Total loading time: 0.242 Render date: 2022-06-26T18:17:58.316Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

On Sets with a Small Subset Sum

Published online by Cambridge University Press:  01 September 1999

Y. O. HAMIDOUNE
Affiliation:
E. Combinatoire, Univ. Pierre et Marie Curie, 4 Place Jussieu, 75230 Paris Cedex 05, France (e-mail: yha@ccr.jussieu.fr)
A. S. LLADÓ
Affiliation:
Dep. Matemàtica Aplicada i Telemàtica, Univ. Politècnica de Catalunya, Jordi Girona, 1, 08034 Barcelona, Spain (e-mail: allado@mat.upc.es, oriol@mat.upc.es)
O. SERRA
Affiliation:
Dep. Matemàtica Aplicada i Telemàtica, Univ. Politècnica de Catalunya, Jordi Girona, 1, 08034 Barcelona, Spain (e-mail: allado@mat.upc.es, oriol@mat.upc.es)

Abstract

Let A be a subset of an abelian group G. The subset sum of A is the set [sum ](A) = {[sum ]xT[mid ]TA}. We prove the following result. Let S be a generating subset of an abelian group G such that 0∉S and 14[les ][mid ]S[mid ]. Then one of the following conditions holds.

(i) [mid ][sum ](S)[mid ][ges ]min([mid ]G[mid ] −3, 3[mid ]S[mid ]−3).

(ii) There is an xS such that S[setmn ]{x} generates a proper subgroup of order less than (3[mid ]S[mid ]−3)/2.

As a consequence, we obtain the following open case of an old conjecture of Diderrich. Let q be a composite odd number and let G be an abelian group of order 3q. Let S be a subset of G with cardinality q+1. Then every element of G is the sum of some subset of S.

Type
Research Article
Copyright
1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On Sets with a Small Subset Sum
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

On Sets with a Small Subset Sum
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

On Sets with a Small Subset Sum
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *