Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-10-05T18:43:57.710Z Has data issue: false hasContentIssue false

On Twisted Odd Graphs

Published online by Cambridge University Press:  01 May 2000

M. A. FIOL
Affiliation:
Departament de Matemàtica Aplicada i Telemàtica, Universitat Politècnica de Catalunya, Jordi Girona 1-3, Mòdul C3, Campus Nord, 08034 Barcelona, Spain (e-mails: fiol@mat.upc.es, egarriga@mat.upc.es, yebra@mat.upc.es)
E. GARRIGA
Affiliation:
Departament de Matemàtica Aplicada i Telemàtica, Universitat Politècnica de Catalunya, Jordi Girona 1-3, Mòdul C3, Campus Nord, 08034 Barcelona, Spain (e-mails: fiol@mat.upc.es, egarriga@mat.upc.es, yebra@mat.upc.es)
J. L. A. YEBRA
Affiliation:
Departament de Matemàtica Aplicada i Telemàtica, Universitat Politècnica de Catalunya, Jordi Girona 1-3, Mòdul C3, Campus Nord, 08034 Barcelona, Spain (e-mails: fiol@mat.upc.es, egarriga@mat.upc.es, yebra@mat.upc.es)

Abstract

The twisted odd graphs are obtained from the well-known odd graphs through an involutive automorphism. As expected, the twisted odd graphs share some of the interesting properties of the odd graphs but, in general, they seem to have a more involved structure. Here we study some of their basic properties, such as their automorphism group, diameter, and spectrum. They turn out to be examples of the so-called boundary graphs, which are graphs satisfying an extremal property that arises from a bound for the diameter of a graph in terms of its distinct eigenvalues.

Type
Research Article
Copyright
2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)