Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-qq8pn Total loading time: 0.159 Render date: 2021-06-19T12:55:44.455Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Random Colourings and Automorphism Breaking in Locally Finite Graphs

Published online by Cambridge University Press:  16 September 2013

FLORIAN LEHNER
Affiliation:
Institute of Geometry, TU Graz, Kopernikusgasse 24, A 8010 Graz, Austria (e-mail: f.lehner@tugraz.at)
Corresponding
E-mail address:

Abstract

A colouring of a graph G is called distinguishing if its stabilizer in Aut G is trivial. It has been conjectured that, if every automorphism of a locally finite graph moves infinitely many vertices, then there is a distinguishing 2-colouring. We study properties of random 2-colourings of locally finite graphs and show that the stabilizer of such a colouring is almost surely nowhere dense in Aut G and a null set with respect to the Haar measure on the automorphism group. We also investigate random 2-colourings in several classes of locally finite graphs where the existence of a distinguishing 2-colouring has already been established. It turns out that in all of these cases a random 2-colouring is almost surely distinguishing.

Type
Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Albertson, M. O. and Collins, K. L. (1996) Symmetry breaking in graphs. Electron. J. Combin. 3 R18.Google Scholar
[2]Cuno, J., Imrich, W. and Lehner, F. (2014) Distinguishing graphs with infinite motion and nonlinear growth. Ars Math. Contemp. 7 201213.Google Scholar
[3]Diestel, R. (2005) Graph Theory, third edition, Vol. 173 of Graduate Texts in Mathematics, Springer.Google Scholar
[4]Evans, D. M. (1987) A note on automorphism groups of countably infinite structures. Arch. Math. 49 479483.CrossRefGoogle Scholar
[5]Halin, R. (1973) Automorphisms and endomorphisms of infinite locally finite graphs. Abh. Math. Sem. Univ. Hamburg 39 251283.CrossRefGoogle Scholar
[6]Hammack, R., Imrich, W. and Klavžar, S. (2011) Handbook of Product Graphs, second edition, CPC Press.Google Scholar
[7]Imrich, W., Klavžar, S. and Trofimov, V. (2007) Distinguishing infinite graphs. Electron. J. Combin. 14 R36.Google Scholar
[8]Imrich, W., Smith, S. M., Tucker, T. and Watkins, M. E. Infinite motion and 2-distinguishability of groups and graphs. Preprint.Google Scholar
[9]Karrass, A. and Solitar, D. (1956) Some remarks on the infinite symmetric groups. Math. Z. 66 6469.CrossRefGoogle Scholar
[10]Lehner, F. Distinguishing graphs with intermediate growth. Preprint.Google Scholar
[11]Maurer, I. (1955) Les groupes de permutations infinies. Gaz. Mat. Fiz. Ser. A 7 400408.Google Scholar
[12]Möller, R. G. (2010) Graphs, permutations and topological groups. arXiv.org/pdf/1008.3062v2.pdfGoogle Scholar
[13]Rubin, F. (1979) Problem 729. J. Recreational Math. 11 128. Solution in 12 (1980).Google Scholar
[14]Rudin, W. (1987) Real and Complex Analysis, third edition, McGraw-Hill.Google Scholar
[15]Russell, A. and Sundaram, R. (1998) A note on the asymptotics and computational complexity of graph distinguishability. Electron. J. Combin. 5 R23.Google Scholar
[16]Smith, S. M., Tucker, T. W. and Watkins, M. E. (2012) Distinguishability of infinite groups and graphs. Electron. J. Combin. 19 R27.Google Scholar
[17]Tucker, T. W. (2011) Distinguishing maps. Electron. J. Combin. 18 #50.Google Scholar
[18]Watkins, M. E. and Zhou, X. (2007) Distinguishability of locally finite trees. Electron. J. Combin. 14 R29.Google Scholar
5
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Random Colourings and Automorphism Breaking in Locally Finite Graphs
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Random Colourings and Automorphism Breaking in Locally Finite Graphs
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Random Colourings and Automorphism Breaking in Locally Finite Graphs
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *