Hostname: page-component-588bc86c8c-br67x Total loading time: 0 Render date: 2023-12-01T01:16:27.649Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Scott's Induced Subdivision Conjecture for Maximal Triangle-Free Graphs

Published online by Cambridge University Press:  21 March 2012

Université Montpellier 2, CNRS, LIRMM, 161 Rue Ada, 34392 Montpellier, France (e-mail:
Laboratoire LIP (Université Lyon, CNRS, ENS Lyon, INRIA, UCBL), 46 Allée d'Italie, 69364 Lyon CEDEX 07, France (e-mail:


Scott conjectured in [6] that the class of graphs with no induced subdivision of a given graph is χ-bounded. We verify his conjecture for maximal triangle-free graphs.


Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


[1]Bollobás, B. and Thomason, A. (1998) Proof of a conjecture of Mader, Erdős and Hajnal on topological complete subgraphs. Europ. J. Combin. 19 883887.Google Scholar
[2]Ding, G., Seymour, P. and Winkler, P. (1994) Bounding the vertex cover number of a hypergraph. Combinatorica 14 2334.Google Scholar
[3]Gyárfás, A. (1987) Problems from the world surrounding perfect graphs. Zastos. Mat. XIX 413441.Google Scholar
[4]Kim, J. (1995) The Ramsey number R(3, t) has order of magnitude t 2/log (t). Random Struct. Alg. 7 173207.Google Scholar
[5]Mader, W. (1967) Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Mathematische Annalen 174 265268.Google Scholar
[6]Scott, A. (1997) Induced trees in graphs of large chromatic number. J. Graph Theory 24 297311.Google Scholar