Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-mcrbk Total loading time: 0.214 Render date: 2022-07-01T04:19:11.627Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Triangles in Regular Graphs with Density Below One Half

Published online by Cambridge University Press:  01 May 2009

ALLAN SIU LUN LO*
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge CB3 0WB, UK (e-mail: allan.lo@cantab.net)

Abstract

Let k3reg(n, d) be the minimum number of triangles in d-regular graphs with n vertices. We find the exact value of k3reg(n, d) for d between and n/2. In addition, we identify the structure of the extremal graphs.

Type
Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ahlswede, R. and Katona, G. O. H. (1978) Graphs with maximal number of adjacent pairs of edges. Acta Math. Acad. Sci. Hungar. 32 97120.CrossRefGoogle Scholar
[2]Andrásfai, B., Erdős, P. and Sós, V. T. (1974) On the connection between chromatic number, maximal clique and minimal degree of a graph. Discrete Math. 8 205218.CrossRefGoogle Scholar
[3]Das, K. (2004) Maximizing the sum of the squares of the degrees of a graph. Discrete Math. 285 5766.CrossRefGoogle Scholar
[4]de Caen, D. (1998) An upper bound on the sum of squares of degrees in a graph. Discrete Math. 185 245248.CrossRefGoogle Scholar
[5]Lo, A. Cliques in graphs with bounded minimum degree. In preparation.Google Scholar
[6]Nikiforov, V. (2007) The sum of the squares of degrees: Sharp asymptotics. Discrete Math. 307 31873193.CrossRefGoogle Scholar
[7]Olpp, D. (1996) A conjecture of Goodman and the multiplicities of graphs. Austral. J. Combin. 14 267282.Google Scholar
[8]Székely, L. A., Clark, L. H. and Entriger, R. C. (1992) An inequality for degree sequences. Discrete Math. 103 293300.CrossRefGoogle Scholar
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Triangles in Regular Graphs with Density Below One Half
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Triangles in Regular Graphs with Density Below One Half
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Triangles in Regular Graphs with Density Below One Half
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *