[1]Adams, W. W. and Loustaunau, P. (1994) An Introduction to Gröbner Bases, AMS.

[2]Alon, N. (1999) Combinatorial Nullstellensatz. Combin. Probab. Comput. 8 7–29.

[3]Alon, N. (2000) Algebraic and probabilistic methods in discrete mathematics. *Geom. Funct. Anal. Special Volume*, Part II 455–470.

[4]Alon, N., Babai, L. and Suzuki, H. (1991) Multilinear polynomials and Frankl–Ray-Chaudhuri–Wilson type intersection theorems. J. Combin. Theory Ser. A 58 165–180.

[5]Anstee, R. P., Rónyai, L. and Sali, A. (2002) Shattering news. Graphs Combin. 18 59–73.

[6]Babai, L. and Frankl, P. (1992) *Linear Algebra Methods in Combinatorics*, Preliminary Version 2, September 1992.

[7]Babai, L., Frankl, P., Kutin, S. and Štefankovič, D. (2001) Set systems with restricted intersections modulo prime powers. J. Combin. Theory Ser. A 95 39–73.

[8]Bernasconi, A. and Egidi, L. (1999) Hilbert function and complexity lower bounds for symmetric Boolean functions. Inform. Comput. 153 1–25.

[9]Buchberger, B. and Winkler, F., eds (2001) Gröbner Bases and Applications, Cambridge University Press.

[10]Deza, M., Frankl, P. and Singhi, N. M. (1981) On functions of strength *t*. Combinatorica 3 331–339.

[11]Einstein, O. and Hassin, R. (2005) The number of solutions sufficient for solving a family of problems. Math. Oper. Res. 30 880–896.

[12]Felszeghy, B., Ráth, B. and Rónyai, L. (2006) The lex game and some applications. J. Symbol. Comput. 41 663–681.

[13]Frankl, P. (1989) Traces of antichains. Graphs Combin. 5 295–299.

[14]Frankl, P. and Wilson, R. M. (1981) Intersection theorems with geometric consequences. Combinatorica 1 357–368.

[15]Friedl, K., Hegedűs, G. and Rónyai, L. (2007) Gröbner bases for complete ℓ-wide families. Publicationes Math. Debrecen 70 271–290.

[16]Hegedűs, G. and Rónyai, L. (2003) Gröbner bases for complete uniform families. J. Algebraic Combin. 17 171–180.

[17]Hegedűs, G. and Rónyai, L. (2003) Standard monomials for *q*-uniform families and a conjecture of Babai and Frankl. Central Europ. J. Math. 1 198–207. http://www.cesj.com/mathematics.html [18]Hillar, C. J. and Windfeldt, T. (2008) Algebraic characterization of uniquely vertex colorable graphs. J. Combin. Theory Ser. B 98 400–414.

[19]Qian, J. and Ray-Chaudhuri, D. K. (2000) On mod-*p* Alon–Babai–Suzuki inequality. J. Algebraic Combin. 12 85–93.

[20]Sauer, N. (1972) On the density of families of sets. J. Combin. Theory Ser. A 13 145–147.

[21]Shelah, S. (1972) A combinatorial problem: Stability and order for models and theories in infinitary languages. Pacific J. Math. 41 247–261.

[22]Tao, T. and Vu, V. (2006) *Additive Combinatorics*, Vol. 105 of Cambridge Studies in Advanced Mathematics, Cambridge University Press.

[23]Vapnik, V. N. and Chervonenkis, A. Y. (1971) On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. XVI 264–280.

[24]Wilson, R. M. (1990) A diagonal form for the incidence matrices of *t*-subsets vs. *k*-subsets. Europ. J. Combin. 11 609–615.