[1] Ajtai, M. (1996) Generating hard instances of lattice problems. In STOC '96: 28th Annual ACM Symposium on Theory of Computing, ACM, pp. 99–108.

[2] Aharonov, D. and Regev, O. (2005) Lattice problems in NP ∩ coNP. J. Assoc. Comput. Mach. 52 749–765.

[3] Angluin, D. and Valiant, L. G. (1979) Fast probabilistic algorithms for Hamilton circuits and matchings. J. Comput. Syst. Sci. 18 155–193.

[4] Babai, L., Erdos, P. and Selkow, M. (1980) Random graph isomorphism. SIAM J. Comput. 9 628–635.

[5] Begelfor, E., Miller, S. D. and Venkatesan, R. (2015) Non-Abelian analogs of lattice rounding. Groups Complexity Cryptology 7 117–133.

[6] Ben-David, S., Chor, B., Goldreich, O. and Luby, M. (1989) On the theory of average case complexity. In STOC '89: 21st Annual ACM Symposium on Theory of Computing, ACM, pp. 204–216.

[7] Blass, A. and Gurevich, Y. (1995) Matrix transformation is complete for the average case. SIAM J. Comput. 24 3–29.

[8] Blum, M. and Micali, S. (1984) How to generate cryptographically strong sequences of pseudo random bits. SIAM J. Comput. 13 850–864.

[9] Bollobás, B. (2001) Random Graphs, second edition, Cambridge University Press.

[10] Bollobás, B. (2004) Extremal Graph Theory, Dover.

[11] Goldreich, O., Goldwasser, S. and Micali, S. (1986) How to construct random functions. J. Assoc. Comput. Mach. 33 792–807.

[12] Gurevich, Y. (1987) Complete and incomplete randomized NP problems. In SFCS '87: 28th Annual Symposium on Foundations of Computer Science, IEEE, pp. 111–117.

[13] Gurevich, Y. and Shelah, S. (1987) Expected computation time for Hamilton path problem. SIAM J. Comput. 16 486–502.

[14] Gurevich, Y. (1990) Matrix decomposition is complete for the average case. In IEEE FOCS. 2, 802–811.

[15] Gurevich, Y. (1991) Average case complexity. J. Comput. System Sci. 42 346–398.

[16] Hajnal, A. and Szemerédi, E. (1970) Proof of a conjecture of P. Erdős. In Combinatorial Theory and its Applications, II, North-Holland, pp. 601–623.

[17] Ikeno, S. (1958) A 6-symbol 10-state universal Turing machine. In Proc. Inst. of Electrical Communications, Tokyo. (As cited and described in [29].)

[18] Impagliazzo, R. and Levin, L. A. (1990) No better ways to generate hard NP instances than picking uniformly at random. In *FOCS '90: 31st Annual Symposium on Foundations of Computer Science*, IEEE, pp. 812–821.

[19] Jao, D., Miller, S. D. and Venkatesan, R. (2009) Expander graphs based on GRH with an application to elliptic curve cryptography. J. Number Theory 129 1491–1504.

[20] Karp, R. (1976) The probabilistic analysis of some combinatorial search algorithms. In Algorithms and Complexity (Traub, J. F., ed.), Academic Press, pp. 1–19.

[21] Karp, R., Lenstra, J. K., McDiarmid, C. J. H. and Rinnoy Kan, A. H. G. (1985) Probabilistic analysis. In Combinatorial Optimization: Annotated Bibliographies (O'hEigeartaigh, M., Lenstra, J. K. and Rinnoy Kan, A. H. G., eds), Wiley.

[22] Kierstead, H. A. and Kostochka, A. V. (2008) A short proof of the Hajnal–Szemerédi theorem on equitable colouring. Combin. Probab. Comput. 17 265–270.

[23] Johnson, D. (1984) The NP-completeness column: An ongoing guide. J. Alg. 5 284–299.

[24] Lagarias, J. C. and Odlyzko, A. M. (1983) Solving low density subset sum problems. In *24th Annual Symposium on Foundations of Computer Science*, IEEE, pp. 1–10.

[25] Lenstra, A. K. and Lenstra, H. W. (1991) The Development of the Number Field Sieve, Springer.

[26] Levin, L. A. (1986) Average case complete problems. SIAM J. Comput. 15 285–286.

[27] Levin, L. A. (2003) The tale of one-way functions. Prob. Inform. Transm. 39 92–103.

[28] Micciancio, D. and Regev, O. (2004) Worst case to average case reductions using Gaussian measures. In *FOCS '04: Annual IEEE Symposium on Foundations of Computer Science*, IEEE, pp. 372–381.

[29] Minsky, M. L. (1967) Computation: Finite and Infinite Machines, Prentice Hall.

[30] Shamir, A. (1982) A polynomial algorithm for breaking the basic Merkle–Hellman cryptosystem. In *FOCS '82: 23rd Annual Symposium on Foundations of Computer Science*, IEEE, pp. 145–152.

[31] Venkatesan, R. and Levin, L. A. (1988) Random instances of a graph coloring problem are hard. In *STOC '88: 20th Annual ACM Symposium on Theory of Computing*, ACM, pp. 217–222.

[32] Venkatesan, R. and Rajagopalan, S. (1992) Average case intractability of matrix and diophantine problems. In *STOC '92: 42nd Annual ACM symposium on Theory of Computing*, ACM, pp. 632–642.

[33] Yao, A. C. (1982) Theory and applications of trapdoor functions. In *FOCS '82: 23rd Annual Symposium on Foundations of Computer Science*, IEEE, pp. 80–91.

[34] Wang, J. (1995) Average case completeness of a word problem for groups. In *STOC '95: 27th Annual ACM symposium on Theory of Computing*, ACM, pp. 325–334.