Skip to main content Accesibility Help
×
×
Home

An Average-Case Analysis of the Gaussian Algorithm for Lattice Reduction

  • HERVÉ DAUDÉ (a1), PHILIPPE FLAJOLET (a2) and BRIGITTE VALLÉE (a3)
Abstract

The Gaussian algorithm for lattice reduction in dimension 2 is analysed under its standard version. It is found that, when applied to random inputs in a continuous model, the complexity is constant on average, its probability distribution decays geometrically, and the dynamics are characterized by a conditional invariant measure. The proofs make use of connections between lattice reduction, continued fractions, continuants, and functional operators. Analysis in the discrete model and detailed numerical data are also presented.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed