No CrossRef data available.
Published online by Cambridge University Press: 01 December 1997
The Gaussian algorithm for lattice reduction in dimension 2 is analysed under its standard version. It is found that, when applied to random inputs in a continuous model, the complexity is constant on average, its probability distribution decays geometrically, and the dynamics are characterized by a conditional invariant measure. The proofs make use of connections between lattice reduction, continued fractions, continuants, and functional operators. Analysis in the discrete model and detailed numerical data are also presented.