[1]
Chernoff, H. (1952) A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist.
23
493–507.

[2]
Corrádi, K. and Hajnal, A. (1963) On the maximal number of independent circuits in a graph. Acta Math. Hungar.
14
423–439.

[3]
Czygrinow, A., Kierstead, H. A. and Molla, T. (2014) On directed versions of the Corrádi–Hajnal corollary. European J. Combin.
42
1–14.

[4]
Dirac, G. A. (1952) Some theorems on abstract graphs. Proc. London Math. Soc.
3
69–81.

[5]
Enomoto, H. (1998) On the existence of disjoint cycles in a graph. Combinatorica
18
487–492.

[6]
Enomoto, H., Kaneko, A. and Tuza, Z. (1987)
*P*
_{3}-factors and covering cycles in graphs of minimum degree *n*/3. Combinatorics
52
213–220.

[7]
Erdős, P. (1963) Problem 9. In *Theory of Graphs and its Applications*, Czechoslovak Academy of Sciences, Prague.

[8]
Ghouila-Houri, A. (1960) Une condition suffisante d'existence d'un circuit hamiltonien. CR Math. Acad. Sci. Paris
25
495–497.

[9]
Hajnal, A. and Szemerédi, E. (1970) Proof of a conjecture of P. Erdős. In Combinatorial Theory and its Applications, Vol. 2, North-Holland, pp. 601–623.

[10]
Havet, F. and Thomassé, S. (2000) Oriented Hamiltonian paths in tournaments: A proof of Rosenfeld's conjecture. J. Combin. Theory Ser. B
78
243–273.

[11]
Keevash, P., Kuhn, D. and Osthus, D. (2009) An exact minimum degree condition for Hamilton cycles in oriented graphs. J. London Math. Soc.
79
144–166.

[12]
Keevash, P. and Sudakov, B. (2009) Triangle packings and 1-factors in oriented graphs. J. Combin. Theory Ser. B
99
709–727.

[13]
Kierstead, H. A. and Kostochka, A. V. (2008) A short proof of the Hajnal–Szemerédi theorem on equitable colouring. Combin. Probab. Comput.
17
265–270.

[14]
Kierstead, H. A. and Kostochka, A. V. (2008) An Ore-type theorem on equitable coloring. J. Combin. Theory Ser. B
98
226–234.

[15]
Kierstead, H. A., Kostochka, A. V., Mydlarz, M. and Szemerédi, E. (2010) A fast algorithm for equitable coloring. Combinatorica
30
217–224.

[16]
Kierstead, H. A., Kostochka, A. V. and Yu, G. (2009) Extremal graph packing problems: Ore-type versus Dirac-type. In *Surveys in Combinatorics 2009* (Huczynska, S., Mitchell, J. and Roney-Dougal, C., eds), Vol. 365 of London Mathematical Society Lecture Note Series, Cambridge University Press, pp. 113–136.

[17]
Komlós, J. and Sárközy, G. N. and Szemerédi, E. (1996) On the square of a Hamiltonian cycle in dense graphs. Random Struct. Alg.
9
193–211.

[18]
Kühn, D., Mycroft, R. and Osthus, D. (2011) A proof of Sumner's universal tournament conjecture for large tournaments. Proc. London Math. Soc.
4
731–766.

[19]
Levitt, I., Sárközy, G. N. and Szemerédi, E. (2010) How to avoid using the regularity lemma: Pósa's conjecture revisited. Discrete Math.
310
630–641.

[20]
Linial, N., Saks, M. and Sós, V. T. (1983) Largest digraphs contained in all *n*-tournaments. Combinatorica
3
101–104.

[21]
Nash-Williams, C. St J. A. (1971) Edge-disjoint Hamiltonian circuits in graphs with vertices of large valency. In Studies in Pure Mathematics (presented to Richard Rado), Academic Press, pp. 157–183.

[22]
Saks, M. and Sós, V. T. (1981) On unavoidable subgraphs of tournaments. *Finite and Infinite Sets*, Vol. 37 of Colloquia Mathematica Societatis János Bolyai, North-Holland, pp. 663–674.

[23]
Wang, H. (2000) Independent directed triangles in directed graphs. Graphs Combin.
16
453–462.

[24]
Woodall, D. (1972) Sufficient conditions for cycles in digraphs. Proc. London Math. Soc.
24
739–755.