[1]Alon, N., Frieze, A. M. and Welsh, D. (1995) Polynomial time randomized approximation schemes for Tutte–Gröthendieck invariants: The dense case. Random Struct. Alg. 6 459–478.

[2]Alon, N., Yuster, R. and Zwick, U. (1995) Color-coding. J. Assoc. Comput. Mach. 42 844–856.

[3]Artymiuk, P. J., Bath, P. A., Grindley, H., Pepperrell, M., Poirrette, C. A., Rice, A. R., Thorner, D. W., Wild, D. A., Willett, D. J., Allen, P., H., F., and Taylor, R. (1992) Similarity searching in databases of three-dimensional molecules and macromolecules. J. Chem. Inform. Comput. Sci. 32 617–630.

[4]Arvind, V. and Raman, V. (2002) Approximation algorithms for some parameterized counting problems. In Algorithms and Computation, Vol. 2518 of *Lecture Notes in Computer Science*, Springer, pp. 453–464.

[5]Bezáková, I., Bhatnagar, N. and Vigoda, E. (2007) (2006) Sampling binary contingency tables with a greedy start. Random Struct. Alg. 30 168–205.

[6]Chien, S. (2004) A determinant-based algorithm for counting perfect matchings in a general graph. In *Proc. 15th Annual ACM–SIAM Symposium on Discrete Algorithms*, pp. 728–735.

[7]Diestel, R. (2000) Graph Theory, second edition, Springer.

[8]Dong, H., Wu, Y. and Ding, X. (1988) An ARG representation for Chinese characters and a radical extraction based on the representation. In International Conference on Pattern Recognition, IEEE, pp. 920–922.

[9]Dyer, M., Frieze, A. M. and Jerrum, M. (1998) Approximately counting Hamilton paths and cycles in dense graphs. SIAM J. Comput. 27 1262–1272.

[10]Erdős, P., and Rényi, A. (1960) On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5 17–61.

[11]Flum, J. and Grohe, M. (2004) The parameterized complexity of counting problems. SIAM J. Comput. 33 892–922.

[12]Frieze, A. M. and Jerrum, M. (1995) An analysis of a Monte Carlo algorithm for estimating the permanent. Combinatorica 15 67–83.

[13]Frieze, A. M., Jerrum, M., Molloy, M. K., Robinson, R. and Wormald, N. C. (1996) Generating and counting Hamilton cycles in random regular graphs. J. Algorithms 21 176–198.

[14]Frieze, A. M. and McDiarmid, C. (1997) Algorithmic theory of random graphs. Random Struct. Alg. 10 5–42.

[15]Frieze, A. M. and Suen, S. (1992) Counting the number of Hamilton cycles in random digraphs. Random Struct. Alg. 3 235–242.

[16]Fürer, M. and Kasiviswanathan, S. P. (2004) An almost linear time approximation algorithm for the permanent of a random (0–1) matrix. In Foundations of Software Technology and Theoretical Computer Science: FSTTCS 2004, Vol. 3328 of *Lecture Notes in Computer Science*, Springer, pp. 263–274.

[17]Fürer, M. and Kasiviswanathan, S. P. (2005) Approximately counting perfect matchings in general graphs. In *ALENEX/ANALCO*, SIAM, pp. 263–272.

[18]Halin, R. (1971) Studies on minimally *n*-connected graphs. In Combinatorial Mathematics and its Applications (Welsh, D. J. A., ed.), Academic Press, pp. 129–136.

[19]Hammersley, J. M. (1966) Existence theorems and Monte Carlo methods for the monomer–dimer problem. Research Papers in Statistics, Wiley, London, 125–146.

[20]Heun, V. and Mayr, E. W. (2002) Embedding graphs with bounded treewidth into optimal hypercubes. J. Algorithms 43 17–50.

[21]Janson, S., Łuczak, T., and Ruciński, A. (2000) *Random Graphs*, Wiley-Interscience.

[22]Jerrum, M. (2003) *Counting, Sampling and Integrating: Algorithms and Complexity*, Birkhäuser.

[23]Jerrum, M. and Sinclair, A. (1989) Approximating the permanent. SIAM J. Comput. 18 1149–1178.

[24]Jerrum, M. and Sinclair, A. (1993) Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput. 22 1087–1116.

[25]Jerrum, M., Sinclair, A. and Vigoda, E. (2004) A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. Assoc. Comput. Mach. 51 671–697.

[26]Jerrum, M., Valiant, L. and Vazirani, V. (1986) Random generation of combinatorial structures from a uniform distribution. Theoret. Comput. Sci. 43 169–188.

[27]Kasteleyn, P. W. (1967) Graph Theory and Crystal Physics (Harary, F., ed.), Academic Press.

[28]Knuth, D. E. (1975) Estimating the efficiency of backtrack programs. Math. Comp. 29 121–136.

[29]Levinson, R. (1992) Pattern associativity and the retrieval of semantic networks. Comput. Math. Appl. 23 573–600.

[30]Luks, E. M. (1982) Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25 42–65.

[31]Rasmussen, L. E. (1994) Approximating the permanent: A simple approach. Random Struct. Alg. 5 349–362.

[32]Rasmussen, L. E. (1997) Approximately counting cliques. Random Struct. Alg. 11 395–411.

[33]Riordan, O. (2000) Spanning subgraphs of random graphs. Combin. Probab. Comput. 9 125–148.

[34]Sankowski, P. (2003) Alternative algorithms for counting all matchings in graphs. In STACS, Vol. 2607 of *Lecture Notes in Computer Science Volume*, Springer, pp. 427–438.

[35]Stahs, T. and Wahl, F. M. (1992) Recognition of polyhedral objects under perspective views. Comput. Artificial Intelligence 11 155–172.

[36]Toda, S. (1989) On the computational power of PP and ⊕*P*. In *FOCS*, IEEE, pp. 514–519.

[37]Valiant, L. G. (1979) The complexity of computing the permanent. Theoret. Comput. Sci. 8 189–201.