Skip to main content Accesibility Help

A Characterization of Almost-Planar Graphs

  • Bradley S. Gubser (a1)

Kuratowski's Theorem, perhaps the most famous result in graph theory, states that K5 and K3,3 are the only non-planar graphs for which both G\e, the deletion of the edge e, and G/e, the contraction of the edge e, are planar for all edges e of G. We characterize the almost-planar graphs, those non-planar graphs for which G\e or G/e is planar for all edges e of G. This paper gives two characterizations of the almost-planar graphs: an explicit description of the structure of almost-planar graphs; and an excluded minor criterion. We also give a best possible bound on the number of edges of an almost-planar graph.

Hide All
[1]Bergmann, H. (1982) Ein Planaritätskriterium für endliche Graphen. Elem. Math. 37 4951.
[2]Bondy, J. A. and Murty, U. S. R. (1976) Graph Theory with Applications. North-Holland.
[3]Hall, D. W. (1943) A note on primitive skew curves. Bull. Amer. Math. Soc. 49 935937.
[4]Kuratowski, K. (1930) Sur le problème des courbes gauches en topologie. Fund. Math. 15 271283.
[5]Negami, S. (1982) A characterization of 3-connected graphs containing a given graph. J. Combin. Theory 32 6974.
[6]Seymour, P. D. (1980) Decomposition of regular matroids. J. Combin. Theory Ser. 528 305359.
[7]Wagner, K. (1937) Über eine eigenshaft der ebenen komplexe. Math. Ann. 114 570590.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed