Skip to main content Accesibility Help

Chromatic Roots are Dense in the Whole Complex Plane

  • ALAN D. SOKAL (a1)

I show that the zeros of the chromatic polynomials $P_G(q)$ for the generalized theta graphs $\Theta^{(s,p)}$ are, taken together, dense in the whole complex plane with the possible exception of the disc $|q-1| < 1$. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) $Z_G(q,v)$ outside the disc $|q+v| < |v|$. An immediate corollary is that the chromatic roots of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha–Kahane–Weiss theorem on the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed