[1]Achlioptas, D. and Naor, A. (2004) The two possible values of the chromatic number of a random graph. In *Proc.* 36th *STOC*, pp. 587–593.

[2]Alon, N. and Kahale, N. (1997) A spectral technique for coloring random 3-colorable graphs. SJCOM 26 1733–1748.

[3]Alon, N. and Kahale, N. (1998) Approximating the independence number via the ϑ-function. MATHPROG 80 253–264.

[4]Blum, A. and Spencer, J. (1995) Coloring random and semirandom *k*-colorable graphs. JALGO 19 203–234.

[5]Bollobás, B. (1988) The chromatic number of random graphs. COMB 8 49–55.

[6]Bollobás, B. (2001) Random Graphs, 2nd edn, Cambridge University Press.

[7]Bollobás, B. and Scott, A. D. (2004) Max cut for random graphs with a planted partition. CPC 13 451–474.

[8]Boppana, R. (1987) Eigenvalues and graph bisection: an average-case analysis. In *Proc.* 28th *FOCS*, pp. 280–285.

[9]Böttcher, J. (2005) Coloring sparse random *k*-colorable graphs in polynomial expected time. In *Proc.* 30th *MFCS*, pp. 156–167.

[10]Charikar, M. (2002) On semidefinite programming relaxations for graph coloring and vertex cover. In *Proc.* 13th *SODA*, pp. 616–620.

[11]Coja-Oghlan, A. Solving NP-hard semirandom graph problems in polynomial expected time. *JALGO*, to appear.

[12]Coja-Oghlan, A. (2006) Finding large independent sets in polynomial expected time. CPC 15 XXX–XXX.

[13]Coja-Oghlan, A., Moore, C. and Sanwalani, V. (2006) MAX *k*-CUT and approximating the chromatic number of random graphs. RSA 28 289–322.

[14]Dyer, M. and Frieze, A. (1989) The solution of some NP-hard problems in polynomial expected time. JALGO 10 451–489.

[15]Feige, U. and Kilian, J. (1998) Zero knowledge and the chromatic number. JCSS 57 187–199.

[16]Feige, U. and Kilian, J. (2001) Heuristics for semirandom graph problems. JCSS 63 639–671.

[17]Feige, U. and Krauthgamer, R. (2000) Finding and certifying a large hidden clique in a semirandom graph. RSA 16 195–208.

[18]Feige, U. and Ofek, E. (2005) Spectral techniques applied to sparse random graphs. RSA 27 251–275.

[19]Frieze, A. and Jerrum, M. (1997) Improved approximation algorithms for MAX *k*-CUT and MAX BISECTION. ALGORITH 18 61–77.

[20]Frieze, A. and McDiarmid, C. (1997) Algorithmic theory of random graphs. RSA 10 5–42.

[21]Goemans, M. X. and Kleinberg, J. (1998) The *Lovasz* theta function and a semidefinite programming relaxation of vertex cover. SJDM 11 1–48.

[22]Goemans, M. X. and Williamson, D. P. (1995) Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. JACM 42 1115–1145.

[23]Grötschel, M., Lovász, L. and Schrijver, A. (1988) Geometric Algorithms and Combinatorial Optimization, Springer.

[24]Helmberg, C. (2000) Semidefinite programming for combinatorial optimization. Habilitationsschrift; Report ZR-00-34, Zuse Institute Berlin.

[25]Janson, S., Łuczak, T. and Ruciński, A. (2000) Random Graphs, Wiley.

[26]Karger, D., Motwani, R. and Sudan, M. (1998) Approximate graph coloring by semidefinite programming. JACM 45 246–265.

[27]Khanna, S., Linial, N. and Safra, S. (2000) On the hardness of approximating the chromatic number. COMB 20 393–415.

[28]Krivelevich, M. (2002) Coloring random graphs: An algorithmic perspective. In *Proc.* 2nd *Colloquium on Mathematics and Computer Science*, pp. 175–195.

[29]Krivelevich, M. and Vilenchik, D. (2006) Semirandom models as benchmarks for coloring algorithms. In *Proc.* 8th *ANALCO*, pp. 211–221.

[30]Kučera, L. (1989) Graphs with small chromatic number are easy to color. IPL 30 233–236.

[31]Lawler, E. L. (1976) A note on the complexity of the chromatic number problem. IPL 5 66–67.

[32]Łuczak, T. (1991) The chromatic number of random graphs. COMB 11 45–54.

[33]McSherry, F. (2001) Spectral partitioning of random graphs. In *Proc.* 42nd *FOCS*, pp. 529–537.

[34]Subramanian, C. R. (1999) Minimum coloring random and semirandom graphs in polynomial average time. JALGO 33 112–123.

[35]Subramanian, C. R., Fürer, M. and Veni Madhavan, C. E (1998) Algorithms for coloring semi-random graphs. RSA 13 125–158.

[36]Subramanian, C. R. and Veni Madhavan, C. E. (2002) General partitioning on random graphs. JALGO 42 153–172.

[37]Szegedy, M. (1994) A note on the θ number of *Lovasz* and the generalized Delsarte bound. In *Proc.* 35th *FOCS*, pp. 36–39.