Published online by Cambridge University Press: 06 September 2002
We show that, if G is a graph of order n with maximal degree Δ(G) and minimal degree δ(G) whose complement contains no K2,s, s [ges ] 2, then G contains every tree T of order n−s+1 whose maximal degree is at most Δ(G) and whose vertex of second-largest degree is at most δ(G). We then show that this result implies that special cases of two conjectures are true. We verify that the Erdös–Sós conjecture, which states that a graph whose average degree is larger than k−1 contains every tree of order k+1, is true for graphs whose complement does not contain a K2,4, and the Komlós–Sós conjecture, which states that every graph of median degree at least k contains every tree of order k+1, is true for graphs whose complement does not contain a K2,3.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.