Skip to main content Accessibility help

Decomposing Graphs into Edges and Triangles



We prove the following 30 year-old conjecture of Győri and Tuza: the edges of every n-vertex graph G can be decomposed into complete graphs C1,. . .,C of orders two and three such that |C1|+···+|C| ≤ (1/2+o(1))n2. This result implies the asymptotic version of the old result of Erdős, Goodman and Pósa that asserts the existence of such a decomposition with ℓ ≤ n2/4.



Hide All

This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement 648509). This publication reflects only its authors' view; the European Research Council Executive Agency is not responsible for any use that may be made of the information it contains.


The first author was also supported by the Engineering and Physical Sciences Research Council (EPSRC) Standard Grant EP/M025365/1.

This author was supported in part by NSF grant DMS-1600390.

This author was also supported by the CNPq Science Without Borders grant 200932/2014-4.



Hide All
[1] Baber, R. and Talbot, J. (2011) Hypergraphs do jump. Combin. Probab. Comput. 20 161171.
[2] Baber, R. and Talbot, J. (2014) A solution to the 2/3 conjecture. SIAM J. Discrete Math. 28 756766.
[3] Balogh, J., Hu, P., Lidický, B. and Liu, H. (2014) Upper bounds on the size of 4- and 6-cycle-free subgraphs of the hypercube. European J. Combin. 35 7585.
[4] Balogh, J., Hu, P., Lidický, B. and Pfender, F. (2016) Maximum density of induced 5-cycle is achieved by an iterated blow-up of 5-cycle. European J. Combin. 52 4758.
[5] Balogh, J., Hu, P., Lidický, B., Pfender, F., Volec, J. and Young, M. (2017) Rainbow triangles in three-colored graphs. J. Combin. Theory Ser. B 126 83113.
[6] Balogh, J., Hu, P., Lidický, B., Pikhurko, O., Udvari, B. and Volec, J. (2015) Minimum number of monotone subsequences of length 4 in permutations. Combin. Probab. Comput. 24 658679.
[7] Chung, F. R. K. (1981) On the decomposition of graphs. SIAM J. Algebraic Discrete Methods 2 112.
[8] Coregliano, L. N. and Razborov, A. A. (2017) On the density of transitive tournaments. J. Graph Theory 85 1221.
[9] Cummings, J., Král', D., Pfender, F., Sperfeld, K., Treglown, A. and Young, M. (2013) Monochromatic triangles in three-coloured graphs. J. Combin. Theory Ser. B 103 489503.
[10] Das, S., Huang, H., Ma, J., Naves, H. and Sudakov, B. (2013) A problem of Erdős on the minimum number of k-cliques. J. Combin. Theory Ser. B 103 344373.
[11] Erdős, P., Goodman, A. W. and Pósa, L. (1966) The representation of a graph by set intersections. Canad. J. Math. 18 106112.
[12] Even-Zohar, C. and Linial, N. (2015) A note on the inducibility of 4-vertex graphs. Graphs Combin. 31 13671380.
[13] Falgas-Ravry, V., Marchant, E., Pikhurko, O. and Vaughan, E. R. (2015) The codegree threshold for 3-graphs with independent neighborhoods. SIAM J. Discrete Math. 29 15041539.
[14] Gethner, E., Hogben, L., Lidický, B., Pfender, F., Ruiz, A. and Young, M. (2017) On crossing numbers of complete tripartite and balanced complete multipartite graphs. J. Graph Theory 84 552565.
[15] Glebov, R., Král', D. and Volec, J. (2016) A problem of Erdős and Sós on 3-graphs. Israel J. Math. 211 349366.
[16] Goaoc, X., Hubard, A., de Joannis de Verclos, R., Sereni, J.-S. and Volec, J. (2015) Limits of order types. In 31st International Symposium on Computational Geometry, Vol. 34 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 300–314.
[17] Győri, E. and Keszegh, B. (2015) On the number of edge-disjoint triangles in K 4-free graphs. arXiv:1506.03306
[18] Győri, E. and Keszegh, B. (2017) On the number of edge-disjoint triangles in K 4-free graphs. Electron. Notes Discrete Math. 61 557560.
[19] Győri, E. and Kostochka, A. V. (1979) On a problem of G. O. H. Katona and T. Tarján. Acta Math. Acad. Sci. Hungar. 34 321327.
[20] Győri, E. and Tuza, Z. (1987) Decompositions of graphs into complete subgraphs of given order. Studia Sci. Math. Hungar. 22 315320.
[21] Hatami, H., Hladký, J., Král', D., Norine, S. and Razborov, A. (2012) Non-three-colourable common graphs exist. Combin. Probab. Comput. 21 734742.
[22] Haxell, P. E. and Rödl, V. (2001) Integer and fractional packings in dense graphs. Combinatorica 21 1338.
[23] Hladký, J., Král', D. and Norin, S. (2017) Counting flags in triangle-free digraphs. Combinatorica 37 4976.
[24] Kahn, J. (1981) Proof of a conjecture of Katona and Tarján. Period. Math. Hungar. 12 8182.
[25] Kim, J., Kühn, D., Osthus, D. and Tyomkyn, M. (2016) A blow-up lemma for approximate decompositions. arXiv:1604.07282.
[26] Král', D., Lidický, B., Martins, T. L. and Pehova, Y. (2017) Decomposing graphs into edges and triangles. arXiv 1710.08486v2
[27] Král', D., Liu, C.-H., Sereni, J.-S., Whalen, P. and Yilma, Z. B. (2013) A new bound for the 2/3 conjecture. Combin. Probab. Comput. 22 384393.
[28] Král', D., Mach, L. and Sereni, J.-S. (2012) A new lower bound based on Gromov's method of selecting heavily covered points. Discrete Comput. Geom. 48 487498.
[29] Král', D. and Pikhurko, O. (2013) Quasirandom permutations are characterized by 4-point densities. Geom. Funct. Anal. 23 570579.
[30] Lidický, B. and Pfender, F. (2017) Semidefinite programming and Ramsey numbers. arXiv:1704.03592
[31] McGuinness, S. (1994) Greedy maximum-clique decompositions. Combinatorica 14 335343.
[32] McGuinness, S. (1994) The greedy clique decomposition of a graph. J. Graph Theory 18 427430.
[33] Razborov, A. A. (2007) Flag algebras. J. Symbolic Logic 72 12391282.
[34] Tuza, Z. (2001) Unsolved Combinatorial Problems, Part I. BRICS Lecture Series LS-01-1.
[35] Yuster, R. (2005) Integer and fractional packing of families of graphs. Random Struct. Alg. 26 110118.

MSC classification

Related content

Powered by UNSILO

Decomposing Graphs into Edges and Triangles



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.