[1]Abramson, F. G. and Harrington, L. A. (1978) Models without indiscernibles. J. Symbolic Logic 43 572–600.

[2]Deuber, W. (1975) Generalizations of Ramsey's theorem. In Infinite and Finite Sets I: Colloq., Keszthely, 1973, dedicated to P. Erdős on his 60th birthday, Vol. 10 of *Colloq. Math. Soc. János Bolyai*, North-Holland, pp. 323–332.

[3]Deuber, W. (1975) Partitionstheoreme für Graphen. Comment. Math. Helv. 50 311–320.

[4]Erdős, P., Hajnal, A. and Pósa, L. (1975) Strong embeddings of graphs into colored graphs. In Infinite and Finite Sets I: Colloq., Keszthely, 1973, dedicated to P. Erdős on his 60th birthday, Vol. 10 of *Colloq. Math. Soc. János Bolyai*, North-Holland, pp. 585–595.

[5]Graham, R. L., Grötschel, M. and Lovász, L., editors (1995) Handbook of Combinatorics, Vols 1, 2, Elsevier Science.

[6]Graham, R. L., Leeb, K. and Rothschild, B. L. (1972) Ramsey's theorem for a class of categories. Proc. Nat. Acad. Sci. USA 69 119–120.

[7]Graham, R. L., Rothschild, B. L. and Spencer, J. H. (1990) Ramsey Theory, second edition, Wiley-Interscience Series in Discrete Mathematics and Optimization.

[8]Graham, R. L. and Winkler, P. M. (1984) Isometric embeddings of graphs. Proc. Nat. Acad. Sci. USA 81 7259–7260.

[9]Hales, A. W. and Jewett, R. I. (1963) Regularity and positional games. Trans. Amer. Math. Soc. 106 222–229.

[10]Nešetřil, J. (2005) Ramsey classes and homogeneous structures. Combin. Probab. Comput. 14 171–189.

[11]Nešetřil, J. (2007) Metric spaces are Ramsey. European J. Combin. 28 457–468.

[12]Nešetřil, J. and Rödl, V. (1975) Partitions of subgraphs. In Recent Advances in Graph Theory: Proc. Second Czechoslovak Sympos., Prague, 1974, Academia, pp. 413–423.

[13]Nešetřil, J. and Rödl, V. (1977) Partitions of finite relational and set systems. J. Combin. Theory Ser. A 22 289–312.

[14]Nešetřil, J. and Rödl, V. (1978) On a probabilistic graph-theoretical method. Proc. Amer. Math. Soc. 72 417–421.

[15]Nešetřil, J. and Rödl, V. (1979) Partition theory and its application. In Surveys in Combinatorics: Proc. Seventh British Combinatorial Conf., Cambridge, 1979, Vol. 38 of *London Math. Soc. Lecture Note Ser.*, Cambridge University Press, pp. 96–156.

[16]Nešetřil, J. and Rödl, V. (1979) A short proof of the existence of highly chromatic hypergraphs without short cycles. J. Combin. Theory Ser. B 27 225–227.

[17]Nešetřil, J. and Rödl, V. (1984) Combinatorial partitions of finite posets and lattices: Ramsey lattices. Algebra Universalis 19 106–119.

[18]Nešetřil, J. and Rödl, V. (1987) Strong Ramsey theorems for Steiner systems. Trans. Amer. Math. Soc. 303 183–192.

[19]Nešetřil, J. and Rödl, V. (1989) The partite construction and Ramsey set systems. Discrete Math. 75 327–334.

[20]Nešetřil, J. and Rödl, V. (1990) Introduction: Ramsey theory old and new. In Mathematics of Ramsey Theory, Vol. 5 of *Algorithms Combin.*, Springer, pp. 1–9.

[21]Nešetřil, J. and Rödl, V. (1992) On Ramsey graphs without bipartite subgraphs. Discrete Math. 101 223–229.

[22]Rödl, V. (1973) A generalization of Ramsey theorem and dimension of graphs. Master's thesis, Charles University, Prague.

[23]Rödl, V. (1976) A generalization of the Ramsey theorem. In *Graphs, Hypergraphs and Block Systems: Zielona Góra 1976*, pp. 211–219.

[24]Winkler, P. M. (1984) Isometric embedding in products of complete graphs. Discrete Appl. Math. 7 221–225.