[1] Apostol, T. M. (1976) Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer.

[2] Arratia, R., Barbour, A. and Tavaré, S. (1992) Poisson process approximations for the Ewens sampling formula. Ann. Appl. Probab. 2 519–535.

[3] Arratia, R., Barbour, A. and Tavaré, S. (2000) Limits of logarithmic combinatorial structures. Ann. Probab. 28 1620–1644.

[4] Arratia, R., Barbour, A. and Tavaré, S. (2016) Exploiting the Feller coupling for the Ewens sampling formula. Statist. Sci. 31 27–29.

[5] Arratia, R. and Tavaré, S. (1992) The cycle structure of random permutations. Ann. Probab. 20 1567–1591.

[6] Arratia, R. and Tavaré, S. (1994) Independent process approximations for random combinatorial structures. Adv. Math. 104 90–154.

[7] Babai, L. (1981) On the order of uniprimitive permutation groups. Ann. of Math. 113 553–568.

[8] Betz, V., Ueltschi, D. and Velenik, Y. (2011) Random permutations with cycle weights. Ann. Appl. Probab. 21 312–331.

[9] Bovey, J. (1980) The probability that some power of a permutation has small degree. Bull. London Math. Soc. 12 47–51.

[10] Crane, H. (2016) The ubiquitous Ewens sampling formula. Statist. Sci. 31 1–19.

[11] Crane, H. (2016) Rejoinder: The ubiquitous Ewens sampling formula. Statist. Sci. 31 37–39.

[12] Davenport, J. and Smith, G. (2000) Fast recognition of alternating and symmetric Galois groups. J. Pure Appl. Algebra 153 17–25.

[13] Dixon, J. D. (1992) Random sets which invariably generate the symmetric group. Discrete Math. 105 25–39.

[14] Eberhard, S., Ford, K. and Green, B. (2016) Permutations fixing a *k*-set. Internat. Math. Res. Notices 2016 6713–6731.

[15] Eberhard, S., Ford, K. and Green, B. (2017) Invariable generation of the symmetric group. Duke Math. J. 166 1573–1590.

[16] Ercolani, N. M. and Ueltschi, D. (2014) Cycle structure of random permutations with cycle weights. Random Struct. Alg. 44 109–133.

[17] Erdős, P. and Turán, P. (1967) On some problems of a statistical group-theory, II. Acta Math. Hungar. 18 151–163.

[18] Euler, L. (1737) Observationes circa series infinitas. Commentarii Academiae Scientarum Petropolitanae 9 160–188.

[19] Ewens, W. (1972) The sampling theory of selectively neutral alleles. Theoret. Popul. Biol. 3 87–112.

[20] Feller, W. (1945) The fundamental limit theorems in probability. Bull. Amer. Math. Soc. 51 800–832.

[21] Gladkich, A. and Peled, R. (2018) On the cycle structure of Mallows permutations. Ann. Probab. 46 1114–1169. doi: 10.1214/17-AOP1202.

[22] Granville, A. (2008) The anatomy of integers and permutations. Preprint.

[23] Guralnick, R. and Magaard, K. (1998) On the minimal degree of a primitive permutation group. J. Algebra 207 127–145.

[24] Heintz, J. (1986) On polynomials with symmetric Galois group which are easy to compute. Theoret. Comput. Sci. 47 99–105.

[25] Kenyon, R., Kral, D., Radin, C. and Winkler, P. (2015) Permutations with fixed pattern densities. arXiv:1506.02340

[26] Łuczak, T. and Pyber, L. (1993) On random generation of the symmetric group. Combin. Probab. Comput. 2 505–512.

[27] Maier, H. and Tenenbaum, G. (1984) On the set of divisors of an integer. Inventio. Math. 76 121–128.

[28] Mallows, C. L. (1957) Non-null ranking models, I. Biometrika 44 114–130.

[29] Mukherjee, S. (2016) Fixed points and cycle structure of random permutations. Electron. J. Probab. 21 #40.

[30] Musser, D. R. (1978) On the efficiency of a polynomial irreducibility test. J. Assoc. Comput. Mach. 25 271–282.

[31] Pemantle, R., Peres, Y. and Rivin, I. (2016) Four random permutations conjugated by an adversary generate *S*_{n} with high probability. Random Struct. Alg. 49 409–428.

[32] van der Waerden, B. (1934) Die Seltenheit der Gleichungen mit Affekt. Math. Ann. 109 13–16.