Skip to main content
×
×
Home

Excluding Minors in Nonplanar Graphs of Girth at Least Five

  • ROBIN THOMAS (a1) and JAN McDONALD THOMSON (a1)
    • Published online: 01 April 2001
Abstract

A graph G is quasi 4-connected if it is simple, 3-connected, has at least five vertices, and for every partition (A, B, C) of V(G) either [mid ]C[mid ] [ges ] 4, or G has an edge with one end in A and the other end in B, or one of A,B has at most one vertex. We show that any quasi 4-connected nonplanar graph with minimum degree at least three and no cycle of length less than five has a minor isomorphic to P10, the Petersen graph with one edge deleted. We deduce the following weakening of Tutte's Four Flow Conjecture: every 2-edge-connected graph with no minor isomorphic to P10 has a nowhere-zero 4-flow. This extends a result of Kilakos and Shepherd who proved the same for 3-regular graphs.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed