Skip to main content
    • Aa
    • Aa

Expansion in High Dimension for the Growth Constants of Lattice Trees and Lattice Animals


We compute the first three terms of the 1/d expansions for the growth constants and one-point functions of nearest-neighbour lattice trees and lattice (bond) animals on the integer lattice $\mathbb{Z}^d$, with rigorous error estimates. The proof uses the lace expansion, together with a new expansion for the one-point functions based on inclusion–exclusion.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2] R. Barequet , G. Barequet and G. Rote (2010) Formulae and growth rates of high-dimensional polycubes. Combinatorica 30 257275.

[3] C. Borgs , J. T. Chayes , R. van der Hofstad and G. Slade (1999) Mean-field lattice trees. Ann. Combin. 3 205221.

[4] N. Clisby , R. Liang and G. Slade (2007) Self-avoiding walk enumeration via the lace expansion. J. Phys. A: Math. Theor. 40 1097311017.

[5] E. Derbez and G. Slade (1997) Lattice trees and super-Brownian motion. Canad. Math. Bull. 40 1938.

[6] E. Derbez and G. Slade (1998) The scaling limit of lattice trees in high dimensions. Comm. Math. Phys. 193 69104.

[7] M. E. Fisher and D. S. Gaunt (1964) Ising model and self-avoiding walks on hypercubical lattices and ‘high-density’ expansions. Phys. Rev. 133 A224239.

[8] D. S. Gaunt and P. J. Peard (2000) 1/d-expansions for the free energy of weakly embedded site animal models of branched polymers. J. Phys. A: Math. Gen. 33 75157539.

[9] D. S. Gaunt , P. J. Peard , C. E. Soteros and S. G. Whittington (1994) Relationships between growth constants for animals and trees. J. Phys. A: Math. Gen. 27 73437351.

[10] D. S. Gaunt and H. Ruskin (1978) Bond percolation processes in d dimensions. J. Phys. A: Math. Gen. 11 13691380.

[11] B. T. Graham (2010) Borel-type bounds for the self-avoiding walk connective constant. J. Phys. A: Math. Theor. 43 235001.

[12] T. Hara (2008) Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36 530593.

[13] T. Hara and G. Slade (1990) On the upper critical dimension of lattice trees and lattice animals. J. Statist. Phys. 59 14691510.

[14] T. Hara and G. Slade (1992) The number and size of branched polymers in high dimensions. J. Statist. Phys. 67 10091038.

[16] A. B. Harris (1982) Renormalized (1/σ) expansion for lattice animals and localization. Phys. Rev. B 26 337366.

[17] R. van der Hofstad and A. Sakai (2005) Critical points for spread-out self-avoiding walk, percolation and the contact process. Probab. Theory Rel. Fields 132 438470.

[18] R. van der Hofstad and G. Slade (2005) Asymptotic expansions in n−1 for percolation critical values on the n-cube and Zn. Random Struct. Alg. 27 331357.

[20] M. Holmes (2008) Convergence of lattice trees to super-Brownian motion above the critical dimension. Electron. J. Probab. 13 671755.

[22] D. A. Klarner (1967) Cell growth problems. Canad. J. Math. 19 851863.

[23] D. J. Klein (1981) Rigorous results for branched polymer models with excluded volume. J. Chem. Phys. 75 51865189.

[24] N. Madras (1999) A pattern theorem for lattice clusters. Ann. Combin. 3 357384.

[26] Y. Mejía Miranda and G. Slade (2011) The growth constants of lattice trees and lattice animals in high dimensions. Electron. Comm. Probab. 16 129136.

[27] P. J. Peard and D. S. Gaunt (1995) 1/d-expansions for the free energy of lattice animal models of a self-interacting branched polymer. J. Phys. A: Math. Gen. 28 61096124.

[28] M. D. Penrose (1992) On the spread-out limit for bond and continuum percolation. Ann. Appl. Probab. 3 253276.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 3 *
Loading metrics...

Abstract views

Total abstract views: 68 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th March 2017. This data will be updated every 24 hours.