[1]Alon, N. and Spencer, J. (2000) The Probabilistic Method, second edition, Wiley.

[2]Azar, Y., Broder, A., Karlin, A. and Upfal, E. (1999) Balanced allocations. SIAM J. Comput. 29 180–200.

[3]Balogh, J., Bollobás, B., Krivelevich, M., Muller, T. and Walters, M. (2011) Hamilton cycles in random geometric graphs. Ann. Appl. Probab. 21 1053–1072.

[4]Bohman, T. and Frieze, A. (2001) Avoiding a giant component. Random Struct. Alg. 19 75–85.

[5]Bohman, T.Frieze, A. and Wormald, N. (2004) Avoidance of a giant component in half the edge set of a random graph. Random Struct. Alg. 25 432–449.

[6]Bohman, T. and Kravitz, D. (2006) Creating a giant component. Combin. Probab. Comput. 15 489–511.

[7]Bollobás, B. (1984) The evolution of sparse graphs. In Graph Theory and Combinatorics: Proc. Cambridge Combinatorial Conference in Honour of Paul Erdős, 1984 (Bollobás, B., ed.), pp. 335–357.

[8]Bollobás, B., Fenner, T. and Frieze, A. (1985) An algorithm for finding Hamilton cycles in random graphs. In Proc. 17th Annual ACM Symposium on Theory of Computing, 1985, pp. 430–439.

[9]Cooper, C. and Frieze, A. (1994) Hamilton cycles in a class of random directed graphs. J. Combin. Theory Ser. B 62 151–163.

[10]Cooper, C. and Frieze, A. (2000) Hamilton cycles in random graphs and directed graphs. Random Struct. Alg. 16 369–401.

[11]Diestel, R. (2005) *Graph Theory*, Vol. 173 of Graduate Texts in Mathematics, third edition, Springer.

[12]Erdős, P. and Rényi, A. (1960) On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5A 17–61.

[13]Erdős, P. and Turán, P. (1965) On some problems of a statistical group-theory I. Z. Wahrsch. Verw. Gebiete 4 175–186.

[14]Flaxman, A., Gamarnik, D. and Sorkin, G. (2005) Embracing the giant component. Random Struct. Alg. 27 277–289.

[15]Frieze, A. (1988) An algorithm for finding Hamilton cycles in random directed graphs. J. Algorithms 9 181–204.

[16]Frieze, A. Personal communication.

[17]Komlós, J. and Szemerédi, E. (1983) Limit distribution for the existence of Hamilton cycles in random graphs. Discrete Math. 43 55–63.

[18]Korshunov, A. (1976) Solution of a problem of Erdős and Rényi on Hamilton cycles in non-oriented graphs. Soviet Math. Dokl. 17 760–764.

[19]Krivelevich, M., Loh, P. and Sudakov, B. (2009) Avoiding small subgraphs in Achlioptas processes. Random Struct. Alg. 34 165–195.

[20]Krivelevich, M., Lubetzky, E. and Sudakov, B. (2010) Hamiltonicity thresholds in Achlioptas processes. Random Struct. Alg. 37 1–24.

[21]Pósa, L. (1976) Hamiltonian circuits in random graphs. Discrete Math. 14 359–364.

[22]Robinson, R. and Wormald, N. C. (1994) Almost all regular graphs are Hamiltonian. Random Struct. Alg. 5 363–374.

[23]Sinclair, A. and Vilenchik, D. (2010) Delaying satisfiability for random 2SAT. In APPROX-RANDOM, pp. 710–723.

[24]Spencer, J. and Wormald, N. (2007) Birth control for giants. Combinatorica 27 587–628.