Published online by Cambridge University Press: 13 November 2009
In this paper we study the use of spectral techniques for graph partitioning. Let G = (V, E) be a graph whose vertex set has a ‘latent’ partition V1,. . ., Vk. Moreover, consider a ‘density matrix’ Ɛ = (Ɛvw)v, sw∈V such that, for v ∈ Vi and w ∈ Vj, the entry Ɛvw is the fraction of all possible Vi−Vj-edges that are actually present in G. We show that on input (G, k) the partition V1,. . ., Vk can (very nearly) be recovered in polynomial time via spectral methods, provided that the following holds: Ɛ approximates the adjacency matrix of G in the operator norm, for vertices v ∈ Vi, w ∈ Vj ≠ Vi the corresponding column vectors Ɛv, Ɛw are separated, and G is sufficiently ‘regular’ with respect to the matrix Ɛ. This result in particular applies to sparse graphs with bounded average degree as n = #V → ∞, and it has various consequences on partitioning random graphs.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.