[1]
Alon, N. and Shikhelman, C. (2016) Many *T* copies in *H*-free graphs. J. Combin. Theory Ser. B
121
146–172.

[2]
Balogh, J., Bollobás, B. and Weinreich, D. (2000) The speed of hereditary properties of graphs. J. Combin. Theory Ser. B
79
131–156.

[3]
Bermond, J., Bond, J., Paoli, M. and Peyrat, C. (1983) Graphs and interconnection networks: Diameter and vulnerability. In *Surveys in Combinatorics: Proceedings of the Ninth British Combinatorics Conference*, Vol. 82 of London Mathematical Society Lecture Note Series, Cambridge University Press, pp. 1–30.

[4]
Boehnlein, E. and Jiang, T. (2012) Set families with a forbidden induced subposet. Combin. Probab. Comput.
21
496–511.

[5]
Bollobás, B. and Győri, E. (2008) Pentagons vs. triangles. Discrete Math. 308
4332–4336.

[6]
Bollobás, B. and Thomason, A. (1997) Hereditary and monotone properties of graphs. In *The Mathematics of Paul Erdős II* (Graham, R. L.
et al., eds), pp. 70–78.

[7]
Chudnovsky, M. (2014) The Erdős–Hajnal conjecture: A survey. J. Graph Theory
75
178–190.

[8]
Chung, F. R. K., Gyárfás, A., Tuza, Z. and Trotter, W. T. (1990) The maximum number of edges in 2*K*
_{2}-free graphs of bounded degree. Discrete Math.
81
129–135.

[9]
Chung, M., Jiang, T. and West, D. Induced Turán problems: Largest *P*
_{
m
}-free graphs with bounded degree. Submitted.

[10]
Chung, M. and West, D. (1993) Large *P*
_{4}-free graphs with bounded degree. J. Graph Theory
17
109–116.

[11]
Chung, M. and West, D. (1996) Large 2*P*
_{3}-free graphs with bounded degree. Discrete Math.
150
69–79.

[12]
Conlon, D. (2012) On the Ramsey multiplicity of complete graphs. Combinatorica
32
171–186.

[13]
Erdős, P. (1962) On the number of complete subgraphs contained in certain graphs. Publ. Math. Inst. Hung. Acad. Sci., VII, Ser. A
3
459–464.

[14]
Erdős, P. (1964) On extremal problems of graphs and generalized graphs. Israel J. Math.
2
183–190.

[15]
Erdős, P., Frankl, P. and Rödl, V. (1986) The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs Combin.
2
113–121.

[16]
Erdős, P. and Hajnal, A. (1989) Ramsey-type theorems. Discrete Appl. Math.
25
37–52.

[17]
Erdős, P. and Simonovits, M. (1982) Compactness results in extremal graph theory. Combinatorica
2
275–288.

[18]
Erdős, P. and Stone, A. H. (1946) On the structure of linear graphs. Bull. Amer. Math. Soc.
52
1087–1091.

[19]
Erdős, P. and Szekeres, G. (1935) A combinatorial problem in geometry. Comput. Math.
2
463–470.

[20]
Fisher, D. and Ryan, J. (1992) Bounds on the number of complete subgraphs. Discrete Math.
103
313–320.

[21]
Fox, J. and Sudakov, B. (2011) Dependent random choice. Random Struct. Alg.
38
68–99.

[22]
Füredi, Z. (1996) New asymptotics for bipartite Turán numbers. J. Combin. Theory Ser. A
75
141–144.

[23]
Füredi, Z. and Simonovits, M. (2013) The history of degenerate (bipartite) extremal graph problems. In Erdős Centennial (Lovász, L.
et al., eds), Vol. 25 of Bolyai Society Mathematical Studies, Springer, pp. 169–264.

[24]
Gyárfás, A., Hubenko, A. and Solymosi, J. (2002) Large cliques in *C*
_{4}-free graphs. Combinatorica
22
269–274.

[25]
Győri, E. and Li, H. (2012) The maximum number of triangles in *C*
_{2k + 1}-free graphs. Combin. Probab. Comput. 21
187–191.

[26]
Hatami, H., Hladký, J., Král', D., Norine, S. and Razborov, A. (2013) On the number of pentagons in triangle-free graphs. J. Combin. Theory Ser. A
120
722–732.

[27]
Li, Y., Rousseau, C. and Zang, W. (2001) Asymptotic upper bounds for Ramsey functions. Graphs Combin.
17
123–128.

[28]
Lu, L. and Milans, K. (2015) Set families with forbidden subposets. J. Combin. Theory Ser. A
136
126–142.

[29]
Parsons, T. D. (1973) The Ramsey numbers *r*(*P*
_{
m
}, *K*
_{
n
}). Discrete Math.
6
159–162.

[30]
Prömel, H. and Steger, A. (1991) Excluding induced subgraphs I: Quadrilaterals. Random Struct. Alg.
2
55–71.

[31]
Prömel, H. and Steger, A. (1993) Excluding induced subgraphs II: Extremal graphs. Discrete Appl. Math.
44
283–294.

[32]
Prömel, H. and Steger, A. (1992) Excluding induced subgraphs III: A general asymptotic. Random Struct. Alg.
3
19–31.

[33]
Razborov, A. (2010) On 3-hypergraphs with forbidden 4-vertex configurations. SIAM J. Discrete Math.
24
946–963.

[34]
Sidorenko, A. (1995) What we know and what we do not know about Turán numbers. Graphs Combin.
11
179–199.

[35]
Simonovits, M. and Sós, V. T. (2001) Ramsey–Turán theory. Discrete Math.
229
293–340.

[36]
Sós, V. T. (1969) On extremal problems in graph theory. In *Proceedings of the Calgary International Conference on Combinatorial Structures and their Application*, Gordon and Breach, NY, pp. 407–410.

[37]
Turán, P. (1941) On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok
48
436–452.