[1] Ajtai, M., Komlós, J. and Szemerédi, E. (1980) A note on Ramsey numbers. J. Combin. Theory Ser. A 29 354–360.

[2] Alon, N. (1996) Independence numbers of locally sparse graphs and a Ramsey type problem. Random Struct. Alg. 9 271–278.

[3] Alon, N., Krivelevich, M. and Sudakov, B. (1999) Coloring graphs with sparse neighborhoods. J. Combin. Theory Ser. B 77 73–82.

[4] Behrend, F. (1946) On sets of integers which contain no three elements in arithmetic progression. Proc. Nat. Acad. Sci. 32 331–332.

[5] Bohman, T. and Keevash, P. (2010) The early evolution of the *H*-free process. Invent. Math 181 291–336.

[6] Bohman, T. and Keevash, P. Dynamic concentration of the triangle-free process. arXiv:1302.5963

[7] Bondy, J. A. and Simonovits, M. (1974) Cycles of even length in graphs. J. Combin. Theory Ser. B 16 97–105.

[8] Brown, W. G., Erdős, P. and Sós, V. (1973) On the existence of triangulated spheres in 3-graphs and related problems. Period. Math. Hungar. 3 221–228.

[9] Bukh, B. and Jiang, Z. (2017) A bound on the number of edges in graphs without an even cycle. Combin. Probab. Comput. 26 1–15.

[10] Caro, Y. (1979) New results on the independence number. Technical Report, Tel Aviv University.

[11] Caro, Y., Li, Y., Rousseau, C. and Zhang, Y. (2000) Asymptotic bounds for some bipartite graph: Complete graph Ramsey numbers. Discrete Math. 220 51–56.

[12] Das, S., Lee, C. and Sudakov, B. (2013) Rainbow Turán problem for even cycles. Euro. J. Combin. 34 905–915

[13] Erdős, P., Faudree, R., Rousseau, C. and Schelp, R. (1978) On cycle-complete graph Ramsey numbers. J. Graph Theory 2 53–64.

[14] Erdős, P. and Rado, R. (1960) Intersection theorems for systems of sets. J. London Math Soc. (2) 35 85–90.

[15] Erdős, P. and Stone, A. H. (1946) On the structure of linear graphs. Bull. Amer. Math. Soc. 52 1087–1091.

[16] Faudree, R. and Simonovits, M. (1983) On a class of degenerate extremal graph problems. Combinatorica 3 83–93.

[17] Fiz Pontiveros, G., Griffiths, S. and Morris, R. The triangle-free process and *R*(3,*k*). arXiv:1302.6279

[18] Füredi, Z. (1996) On the number of edges of quadrilateral-free graphs. J. Combin. Theory Ser. B 68 1–6.

[19] Füredi, Z. and Jiang, T. (2014) Hypergraph Turán numbers of linear cycles. J. Combin. Theory Ser. A 123 252–270.

[20] Füredi, Z., Jiang, T. and Seiver, R. (2014) Exact solution of the hypergraph Turán problem for *k*-uniform linear paths. Combinatorica 34 299–322.

[21] Füredi, Z., Naor, A. and Verstraëte, J. (2006) On the Turán number for the hexagon. Adv. Math. 203 476–496.

[22] Füredi, Z. and Simonovits, M. (2013) The history of degenerate (bipartite) extremal graph problems. In Erdős Centennial (Lovász, L. et al., eds), Vol. 25 of Bolyai Society Mathematical Studies, Springer, pp. 169–264.

[23] Győri, E. and Lemons, N. (2012) Hypergraphs with no cycle of a given length. Combin. Probab. Comput. 21 193–201.

[24] Győri, E. and Lemons, N. (2012) 3-uniform hypergraphs avoiding a given odd cycle. Combinatorica 32 187–203.

[25] Jiang, T. and Seiver, R. (2012) Turán numbers of subdivided graphs. SIAM J. Discrete Math. 26 1238–1255.

[26] Li, Y. and Zang, W. (2003) The independence number of graphs with a forbidden cycle and Ramsey numbers. J. Combin. Opt. 7 353–359.

[27] Keevash, P., Mubayi, D., Sudakov, B. and Verstraëte, J. (2006) Rainbow Turán problems. Combin. Probab. Comput. 16 109–126.

[28] Kim, J. (1995) The Ramsey number *R*(3,*t*) has order of magnitude *t* ^{2}/log*t*. Random Struct. Alg. 7 173–207.

[29] Kostochka, A., Mubayi, D. and Verstraëte, J. (2013) Hypergraph Ramsey numbers: Triangles versus cliques. J. Combin. Theory Ser. A 120 1491–1507.

[30] Kostochka, A., Mubayi, D. and Verstraëte, J. Personal communications.

[31] Kostochka, A., Mubayi, D. and Verstraëte, J. (2015) Turán problems and shadows I: Paths and cycles. J. Combin. Theory Ser. A 129 57–79.

[32] Lazebnik, F. and Verstraëte, J. (2003) On hypergraphs of girth 5. Electron. J. Combin. 10 R25.

[33] Méroueh, A. The Ramsey number of loose cycles versus cliques. arXiv:1504.03668

[34] Molloy, M. and Reed, B. (2002) Graph Colouring and the Probabilistic Method, Vol. 23 of Algorithms and Combinatorics, Springer.

[35] Pikhurko, O. (2012) A note on the Turán function of even cycles. Proc. Amer. Math. Soc. 140 3687–3992.

[36] Roth, K. F. (1951) On a problem of Heilbronn. J. London Math. Soc. 26 198–204.

[37] Ruzsa, I. (1993) Solving a linear equation in a set of integers I. Acta Arithmetica 65 259–282.

[38] Ruzsa, I. and Szemerédi, E. (1978) Triple systems with no six points carrying three triangles. Colloq. Math. Soc. J. Bolyai 18 939–945.

[39] Sudakov, B. (2002) A note on odd cycle-complete graph Ramsey numbers. Electron. J. Combin. 9 N1.

[40] Verstraëte, J. (2000) On arithmetic progressions of cycle lengths in graphs. Combin. Probab. Comput. 9 369–373.

[41] Wei, V. K. (1981) A lower bound on the stability number of a simple graph. Technical memorandum TM 81-11217-9, Bell Laboratories.