Skip to main content
×
×
Home

Linear Turán Numbers of Linear Cycles and Cycle-Complete Ramsey Numbers

  • CLAYTON COLLIER-CARTAINO (a1), NATHAN GRABER (a2) and TAO JIANG (a1)
Abstract

An r-uniform hypergraph is called an r-graph. A hypergraph is linear if every two edges intersect in at most one vertex. Given a linear r-graph H and a positive integer n, the linear Turán number exL(n,H) is the maximum number of edges in a linear r-graph G that does not contain H as a subgraph. For each ℓ ≥ 3, let Cr denote the r-uniform linear cycle of length ℓ, which is an r-graph with edges e1, . . ., e such that, for all i ∈ [ℓ−1], |eiei+1|=1, |ee1|=1 and eiej = ∅ for all other pairs {i,j}, ij. For all r ≥ 3 and ℓ ≥ 3, we show that there exists a positive constant c = cr,ℓ, depending only r and ℓ, such that exL(n,Cr) ≤ cn1+1/⌊ℓ/2⌋. This answers a question of Kostochka, Mubayi and Verstraëte [30]. For even ℓ, our result extends the result of Bondy and Simonovits [7] on the Turán numbers of even cycles to linear hypergraphs.

Using our results on linear Turán numbers, we also obtain bounds on the cycle-complete hypergraph Ramsey numbers. We show that there are positive constants a = am,r and b = bm,r, depending only on m and r, such that

\begin{equation} R(C^r_{2m}, K^r_t)\leq a \Bigl(\frac{t}{\ln t}\Bigr)^{{m}/{(m-1)}} \quad\text{and}\quad R(C^r_{2m+1}, K^r_t)\leq b t^{{m}/{(m-1)}}. \end{equation}

Copyright
References
Hide All
[1] Ajtai, M., Komlós, J. and Szemerédi, E. (1980) A note on Ramsey numbers. J. Combin. Theory Ser. A 29 354360.
[2] Alon, N. (1996) Independence numbers of locally sparse graphs and a Ramsey type problem. Random Struct. Alg. 9 271278.
[3] Alon, N., Krivelevich, M. and Sudakov, B. (1999) Coloring graphs with sparse neighborhoods. J. Combin. Theory Ser. B 77 7382.
[4] Behrend, F. (1946) On sets of integers which contain no three elements in arithmetic progression. Proc. Nat. Acad. Sci. 32 331332.
[5] Bohman, T. and Keevash, P. (2010) The early evolution of the H-free process. Invent. Math 181 291336.
[6] Bohman, T. and Keevash, P. Dynamic concentration of the triangle-free process. arXiv:1302.5963
[7] Bondy, J. A. and Simonovits, M. (1974) Cycles of even length in graphs. J. Combin. Theory Ser. B 16 97105.
[8] Brown, W. G., Erdős, P. and Sós, V. (1973) On the existence of triangulated spheres in 3-graphs and related problems. Period. Math. Hungar. 3 221228.
[9] Bukh, B. and Jiang, Z. (2017) A bound on the number of edges in graphs without an even cycle. Combin. Probab. Comput. 26 115.
[10] Caro, Y. (1979) New results on the independence number. Technical Report, Tel Aviv University.
[11] Caro, Y., Li, Y., Rousseau, C. and Zhang, Y. (2000) Asymptotic bounds for some bipartite graph: Complete graph Ramsey numbers. Discrete Math. 220 5156.
[12] Das, S., Lee, C. and Sudakov, B. (2013) Rainbow Turán problem for even cycles. Euro. J. Combin. 34 905915
[13] Erdős, P., Faudree, R., Rousseau, C. and Schelp, R. (1978) On cycle-complete graph Ramsey numbers. J. Graph Theory 2 5364.
[14] Erdős, P. and Rado, R. (1960) Intersection theorems for systems of sets. J. London Math Soc. (2) 35 8590.
[15] Erdős, P. and Stone, A. H. (1946) On the structure of linear graphs. Bull. Amer. Math. Soc. 52 10871091.
[16] Faudree, R. and Simonovits, M. (1983) On a class of degenerate extremal graph problems. Combinatorica 3 8393.
[17] Fiz Pontiveros, G., Griffiths, S. and Morris, R. The triangle-free process and R(3,k). arXiv:1302.6279
[18] Füredi, Z. (1996) On the number of edges of quadrilateral-free graphs. J. Combin. Theory Ser. B 68 16.
[19] Füredi, Z. and Jiang, T. (2014) Hypergraph Turán numbers of linear cycles. J. Combin. Theory Ser. A 123 252270.
[20] Füredi, Z., Jiang, T. and Seiver, R. (2014) Exact solution of the hypergraph Turán problem for k-uniform linear paths. Combinatorica 34 299322.
[21] Füredi, Z., Naor, A. and Verstraëte, J. (2006) On the Turán number for the hexagon. Adv. Math. 203 476496.
[22] Füredi, Z. and Simonovits, M. (2013) The history of degenerate (bipartite) extremal graph problems. In Erdős Centennial (Lovász, L. et al., eds), Vol. 25 of Bolyai Society Mathematical Studies, Springer, pp. 169264.
[23] Győri, E. and Lemons, N. (2012) Hypergraphs with no cycle of a given length. Combin. Probab. Comput. 21 193201.
[24] Győri, E. and Lemons, N. (2012) 3-uniform hypergraphs avoiding a given odd cycle. Combinatorica 32 187203.
[25] Jiang, T. and Seiver, R. (2012) Turán numbers of subdivided graphs. SIAM J. Discrete Math. 26 12381255.
[26] Li, Y. and Zang, W. (2003) The independence number of graphs with a forbidden cycle and Ramsey numbers. J. Combin. Opt. 7 353359.
[27] Keevash, P., Mubayi, D., Sudakov, B. and Verstraëte, J. (2006) Rainbow Turán problems. Combin. Probab. Comput. 16 109126.
[28] Kim, J. (1995) The Ramsey number R(3,t) has order of magnitude t 2/logt. Random Struct. Alg. 7 173207.
[29] Kostochka, A., Mubayi, D. and Verstraëte, J. (2013) Hypergraph Ramsey numbers: Triangles versus cliques. J. Combin. Theory Ser. A 120 14911507.
[30] Kostochka, A., Mubayi, D. and Verstraëte, J. Personal communications.
[31] Kostochka, A., Mubayi, D. and Verstraëte, J. (2015) Turán problems and shadows I: Paths and cycles. J. Combin. Theory Ser. A 129 5779.
[32] Lazebnik, F. and Verstraëte, J. (2003) On hypergraphs of girth 5. Electron. J. Combin. 10 R25.
[33] Méroueh, A. The Ramsey number of loose cycles versus cliques. arXiv:1504.03668
[34] Molloy, M. and Reed, B. (2002) Graph Colouring and the Probabilistic Method, Vol. 23 of Algorithms and Combinatorics, Springer.
[35] Pikhurko, O. (2012) A note on the Turán function of even cycles. Proc. Amer. Math. Soc. 140 36873992.
[36] Roth, K. F. (1951) On a problem of Heilbronn. J. London Math. Soc. 26 198204.
[37] Ruzsa, I. (1993) Solving a linear equation in a set of integers I. Acta Arithmetica 65 259282.
[38] Ruzsa, I. and Szemerédi, E. (1978) Triple systems with no six points carrying three triangles. Colloq. Math. Soc. J. Bolyai 18 939945.
[39] Sudakov, B. (2002) A note on odd cycle-complete graph Ramsey numbers. Electron. J. Combin. 9 N1.
[40] Verstraëte, J. (2000) On arithmetic progressions of cycle lengths in graphs. Combin. Probab. Comput. 9 369373.
[41] Wei, V. K. (1981) A lower bound on the stability number of a simple graph. Technical memorandum TM 81-11217-9, Bell Laboratories.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 55 *
Loading metrics...

Abstract views

Total abstract views: 218 *
Loading metrics...

* Views captured on Cambridge Core between 2nd November 2017 - 22nd September 2018. This data will be updated every 24 hours.