[1]
Ajtai, M., Komlós, J. and Szemerédi, E. (1980) A note on Ramsey numbers.
J. Combin. Theory Ser. A
29
354–360.

[2]
Alon, N. (1996) Independence numbers of locally sparse graphs and a Ramsey type problem.
Random Struct. Alg.
9
271–278.

[3]
Alon, N., Krivelevich, M. and Sudakov, B. (1999) Coloring graphs with sparse neighborhoods.
J. Combin. Theory Ser. B
77
73–82.

[4]
Behrend, F. (1946) On sets of integers which contain no three elements in arithmetic progression.
Proc. Nat. Acad. Sci.
32
331–332.

[5]
Bohman, T. and Keevash, P. (2010) The early evolution of the *H*-free process.
Invent. Math
181
291–336.

[6]
Bohman, T. and Keevash, P. Dynamic concentration of the triangle-free process. arXiv:1302.5963

[7]
Bondy, J. A. and Simonovits, M. (1974) Cycles of even length in graphs.
J. Combin. Theory Ser. B
16
97–105.

[8]
Brown, W. G., Erdős, P. and Sós, V. (1973) On the existence of triangulated spheres in 3-graphs and related problems.
Period. Math. Hungar.
3
221–228.

[9]
Bukh, B. and Jiang, Z. (2017) A bound on the number of edges in graphs without an even cycle.
Combin. Probab. Comput.
26
1–15.

[10]
Caro, Y. (1979) New results on the independence number. Technical Report, Tel Aviv University.

[11]
Caro, Y., Li, Y., Rousseau, C. and Zhang, Y. (2000) Asymptotic bounds for some bipartite graph: Complete graph Ramsey numbers.
Discrete Math.
220
51–56.

[12]
Das, S., Lee, C. and Sudakov, B. (2013) Rainbow Turán problem for even cycles. Euro. J. Combin.
34
905–915

[13]
Erdős, P., Faudree, R., Rousseau, C. and Schelp, R. (1978) On cycle-complete graph Ramsey numbers.
J. Graph Theory
2
53–64.

[14]
Erdős, P. and Rado, R. (1960) Intersection theorems for systems of sets. J. London Math Soc. (2) 35
85–90.

[15]
Erdős, P. and Stone, A. H. (1946) On the structure of linear graphs.
Bull. Amer. Math. Soc.
52
1087–1091.

[16]
Faudree, R. and Simonovits, M. (1983) On a class of degenerate extremal graph problems.
Combinatorica
3
83–93.

[17]
Fiz Pontiveros, G., Griffiths, S. and Morris, R. The triangle-free process and *R*(3,*k*). arXiv:1302.6279

[18]
Füredi, Z. (1996) On the number of edges of quadrilateral-free graphs.
J. Combin. Theory Ser. B
68
1–6.

[19]
Füredi, Z. and Jiang, T. (2014) Hypergraph Turán numbers of linear cycles.
J. Combin. Theory Ser. A
123
252–270.

[20]
Füredi, Z., Jiang, T. and Seiver, R. (2014) Exact solution of the hypergraph Turán problem for *k*-uniform linear paths.
Combinatorica
34
299–322.

[21]
Füredi, Z., Naor, A. and Verstraëte, J. (2006) On the Turán number for the hexagon.
Adv. Math.
203
476–496.

[22]
Füredi, Z. and Simonovits, M. (2013) The history of degenerate (bipartite) extremal graph problems. In Erdős Centennial (Lovász, L.
et al., eds), Vol. 25 of Bolyai Society Mathematical Studies, Springer, pp. 169–264.

[23]
Győri, E. and Lemons, N. (2012) Hypergraphs with no cycle of a given length.
Combin. Probab. Comput.
21
193–201.

[24]
Győri, E. and Lemons, N. (2012) 3-uniform hypergraphs avoiding a given odd cycle.
Combinatorica
32
187–203.

[25]
Jiang, T. and Seiver, R. (2012) Turán numbers of subdivided graphs.
SIAM J. Discrete Math.
26
1238–1255.

[26]
Li, Y. and Zang, W. (2003) The independence number of graphs with a forbidden cycle and Ramsey numbers.
J. Combin. Opt.
7
353–359.

[27]
Keevash, P., Mubayi, D., Sudakov, B. and Verstraëte, J. (2006) Rainbow Turán problems.
Combin. Probab. Comput.
16
109–126.

[28]
Kim, J. (1995) The Ramsey number *R*(3,*t*) has order of magnitude *t*
^{2}/log*t*.
Random Struct. Alg.
7
173–207.

[29]
Kostochka, A., Mubayi, D. and Verstraëte, J. (2013) Hypergraph Ramsey numbers: Triangles versus cliques.
J. Combin. Theory Ser. A
120
1491–1507.

[30]
Kostochka, A., Mubayi, D. and Verstraëte, J. Personal communications.

[31]
Kostochka, A., Mubayi, D. and Verstraëte, J. (2015) Turán problems and shadows I: Paths and cycles.
J. Combin. Theory Ser. A
129
57–79.

[32]
Lazebnik, F. and Verstraëte, J. (2003) On hypergraphs of girth 5. Electron. J. Combin.
10
R25.

[33]
Méroueh, A. The Ramsey number of loose cycles versus cliques. arXiv:1504.03668

[34]
Molloy, M. and Reed, B. (2002) Graph Colouring and the Probabilistic Method, Vol. 23 of Algorithms and Combinatorics, Springer.

[35]
Pikhurko, O. (2012) A note on the Turán function of even cycles.
Proc. Amer. Math. Soc.
140
3687–3992.

[36]
Roth, K. F. (1951) On a problem of Heilbronn.
J. London Math. Soc.
26
198–204.

[37]
Ruzsa, I. (1993) Solving a linear equation in a set of integers I.
Acta Arithmetica
65
259–282.

[38]
Ruzsa, I. and Szemerédi, E. (1978) Triple systems with no six points carrying three triangles.
Colloq. Math. Soc. J. Bolyai
18
939–945.

[39]
Sudakov, B. (2002) A note on odd cycle-complete graph Ramsey numbers. Electron. J. Combin.
9
N1.

[40]
Verstraëte, J. (2000) On arithmetic progressions of cycle lengths in graphs.
Combin. Probab. Comput.
9
369–373.

[41]
Wei, V. K. (1981) A lower bound on the stability number of a simple graph. Technical memorandum TM 81-11217-9, Bell Laboratories.