[1]Alon, N. and Spencer, J. (2000) The Probabilistic Method, second edition, Wiley.

[2]Andriamampianina, T. and Ravelomanana, V. (2005) Enumeration of connected uniform hypergraphs. In *Proc. FPSAC 2005*.

[3]Barbour, A. D., Karoński, M. and Ruciński, A. (1989) A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B 47 125–145.

[4]Barraez, D., Boucheron, S. and Fernandez de la Vega, W. (2000) On the fluctuations of the giant component. Combin. Probab. Comput. 9 287–304.

[5]Behrisch, M. (2007) Stochastical models for networks in the life sciences. PhD thesis, Humboldt Universität zu Berlin.

[6]Behrisch, M., Coja-Oghlan, A. and Kang, M. (2010) The order of the giant component of random hypergraphs. Random Struct. Alg. 36 149–184.

[7]Behrisch, M., Coja-Oghlan, A. and Kang, M. (2014) The asymptotic probability that a random *d*-uniform hypergraph is connected. Combin. Probab. Comput. doi:10.1017/S0963548314000029.

[8]Bender, E. A., Canfield, E. R. and McKay, B. D. (1990) The asymptotic number of labeled connected graphs with a given number of vertices and edges. Random Struct. Alg. 1 127–169.

[9]Bender, E. A., Canfield, E. R. and McKay, B. D. (1992) Asymptotic properties of labeled connected graphs. Random Struct. Alg. 3 183–202.

[10]Bollobás, B. (2001) Random Graphs, second edition, Cambridge University Press.

[11]Bollobás, B. and Riordan, O. (2012) Asymptotic normality of the size of the giant component via a random walk. J. Combin. Theory Ser. B 102 53–61.

[12]Bollobás, B. and Riordan, O. (2012) Asymptotic normality of the size of the giant component in a random hypergraph. Random Struct. Alg. 41 441–450.

[13]Coja-Oghlan, A., Moore, C. and Sanwalani, V. (2007) Counting connected graphs and hypergraphs via the probabilistic method. Random Struct. Alg. 31 288–329.

[14]Coppersmith, D., Gamarnik, D., Hajiaghayi, M. and Sorkin, G. B. (2004) Random MAX SAT, random MAX CUT, and their phase transitions. Random Struct. Alg. 24 502–545.

[15]Erdős, P. and Rényi, A. (1959) On random graphs I. Publicationes Math. Debrecen 5 290–297.

[16]Erdős, P. and Rényi, A. (1960) On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5 17–61.

[17]van der Hofstad, R. and Spencer, J. (2006) Counting connected graphs asymptotically. European J. Combin. 27 1294–1320.

[18]Janson, S., Łuczak, T. and Ruciński, A. (2000) Random Graphs, Wiley.

[19]Karoński, M. and Łuczak, T. (1997) The number of connected sparsely edged uniform hypergraphs. Discrete Math. 171 153–168.

[20]Karoński, M. and Łuczak, T. (2002) The phase transition in a random hypergraph. J. Comput. Appl. Math. 142 125–135.

[21]Łuczak, T. (1990) On the number of sparse connected graphs. Random Struct. Alg. 1 171–173.

[22]O'Connell, N. (1998) Some large deviation results for sparse random graphs. Probab. Theory Rel. Fields 110 277–285.

[23]Pittel, B. (1990) On tree census and the giant component in sparse random graphs. Random Struct. Alg. 1 311–342.

[24]Pittel, B. and Wormald, N. C. (2003) Asymptotic enumeration of sparse graphs with a minimum degree constraint. J. Combin. Theory Ser. A 101 249–263.

[25]Pittel, B. and Wormald, N. C. (2005) Counting connected graphs inside out. J. Combin. Theory Ser. B 93 127–172.

[26]Ravelomanana, V. and Rijamamy, A. L. (2006) Creation and growth of components in a random hypergraph process. In Computing and Combinatorics, Vol. 4112 of *Lecture Notes in Computer Science*, Springer, pp. 350–359.

[27]Rudin, W. (1987) Real and Complex Analysis, third edition, McGraw-Hill.

[28]Schmidt-Pruzan, J. and Shamir, E. (1985) Component structure in the evolution of random hypergraphs. Combinatorica 5 81–94.

[29]Stepanov, V. E. (1970) On the probability of connectedness of a random graph *g*_{m}(t). Theory Probab. Appl. 15 55–67.